Answer:
6,613 M
Explanation:
Dilution is the process of reducing the concentration of a solute in solution, mixing initial solution with more solvent.
The concentration of Solution B is:
23,881 M × = 9,552 M
Because the initial eight parts are diluted to 12+8 parts.
Thus, concentration of solution C is:
9,552 M × = 6,613 M
I hope it helps!
Answer:
p-fluoronitrobenzene and sodium phenoxide is more appropriate
Explanation:
An ipso substitution is required to form p-nitrophenyl phenyl ether.
For this ipso substitution, an alkoxide anion needs to attack as a nucleophile at the carbon atom attached to fluorine atom and thereby substitute that F atom.
p-nitrophenoxide is an weak nucleophile as compared to phenoxide due to presence of electron withdrawing resonating effect of nitro group at para position.
p-fluoronitrobenzene is a good choice for nucleophilic attack by alkoxide anion as compared to fluorobenzene due to higher positive charge density at carbon atom directly attached to F atom. Higher positive charge density arises due to presence of electron withdrawing resonating effect og nitro group at para position.
So, p-fluoronitrobenzene and sodium phenoxide is more appropriate
Answer:
Electrical energy = 130000000 J and Heat energy = 520000000 J
Explanation:
Multiply the amount of joules from the last question (650000000) by .20 and .80. (Which are the percentages)
Answer: A
FeCl3 + 3 NaOH -> Fe(OH)3 + 3 NaCl
Answer:
0,07448M of phosphate buffer
Explanation:
sodium monohydrogenphosphate (Na₂HP) and sodium dihydrogenphosphate (NaH₂P) react with HCl thus:
Na₂HP + HCl ⇄ NaH₂P + NaCl <em>(1)</em>
NaH₂P + HCl ⇄ H₃P + NaCl <em>(2)</em>
The first endpoint is due the reaction (1), When all phosphate buffer is as NaH₂P form, begins the second reaction. That means that the second endpoint is due the total concentration of phosphate that is obtained thus:
0,01862L of HCl×
= 1,862x10⁻³moles of HCl ≡ moles of phosphate buffer.
The concentration is:
= <em>0,07448M of phosphate buffer</em>
<em></em>
I hope it helps!