Answer:
A. ΔG° = 132.5 kJ
B. ΔG° = 13.69 kJ
C. ΔG° = -58.59 kJ
Explanation:
Let's consider the following reaction.
CaCO₃(s) → CaO(s) + CO₂(g)
We can calculate the standard enthalpy of the reaction (ΔH°) using the following expression.
ΔH° = ∑np . ΔH°f(p) - ∑nr . ΔH°f(r)
where,
n: moles
ΔH°f: standard enthalpy of formation
ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)) - 1 mol × ΔH°f(CaCO₃(s))
ΔH° = 1 mol × (-635.1 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1206.9 kJ/mol)
ΔH° = 178.3 kJ
We can calculate the standard entropy of the reaction (ΔS°) using the following expression.
ΔS° = ∑np . S°p - ∑nr . S°r
where,
S: standard entropy
ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)) - 1 mol × S°(CaCO₃(s))
ΔS° = 1 mol × (39.75 J/K.mol) + 1 mol × (213.74 J/K.mol) - 1 mol × (92.9 J/K.mol)
ΔS° = 160.6 J/K. = 0.1606 kJ/K.
We can calculate the standard Gibbs free energy of the reaction (ΔG°) using the following expression.
ΔG° = ΔH° - T.ΔS°
where,
T: absolute temperature
<h3>A. 285 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 285K × 0.1606 kJ/K = 132.5 kJ
<h3>B. 1025 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1025K × 0.1606 kJ/K = 13.69 kJ
<h3>C. 1475 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1475K × 0.1606 kJ/K = -58.59 kJ
Answer:
6 oxygens on the product side
Explanation:
1) balance the equation:
C2H4 + 3O2 → 2CO2 + 2H2O
2) calculate the number of oxygens on the product side
2CO2=4
2H2O=2
Answer: when you look at the meat, and it looks beautiful like a crispy donut made by Gordan Ramsay
Explanation:
Hells Kitchen is kewl
Answer:
Option D = 0.2 Kj
Explanation:
Given data:
Mass of diethyl ether = 1.0 g
Hvap = 15.7 Kj / mol
Heat absorbed = ?
Solution:
Q = mass × Hvap / molar mass
Q = 1.0 g × 15.7 Kj / mol / 74.12 g/mol
Q = 15.7 Kj / 74.12
Q = 0.212 KJ
The volume of H₂ evolved at NTP=0.336 L
<h3>Further explanation</h3>
Reaction
Decomposition of NH₃
2NH₃ ⇒ N₂ + 3H₂
conservation mass : mass reactants=mass product
0.28 NH₃= 0.25 N₂ + 0.03 H₂
2 g H₂ = 22.4 L
so for 0.03 g :
