The Keq for the reaction N₂ + 3H2 = 2NH3 if the equilibrium concentrations are Keq = 1.5. The correct option is D.
<h3>What is Keq?</h3>
Keq is the ratio of the concentration of reactant to the concentration of the product.
The balanced equation is
N₂ + 3H₂ = 2NH₃
The equilibrium constant is ![\rm \dfrac{[NH_3]^2}{[N_2]\; [H_2]^3}](https://tex.z-dn.net/?f=%5Crm%20%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5C%3B%20%5BH_2%5D%5E3%7D)
The given concentrations of the compounds have been:
Ammonia = 3 M
Nitrogen = 1 M
Hydrogen = 2 M

Thus, the correct option is D. Keq = 1.5.
Learn more about Keq
brainly.com/question/24059926
#SPJ1
Answer: 116 g of copper
Explanation:

where Q= quantity of electricity in coloumbs
I = current in amperes = 24.5A
t= time in seconds = 4.00 hr =
(1hr=3600s)

of electricity deposits 63.5 g of copper.
352800 C of electricity deposits =
of copper.
Thus 116 g of Cu(s) is electroplated by running 24.5A of current
Thus remaining in solution = (0.1-0.003)=0.097moles
Answer:
answer is b
Explanation:
I think it is b. I don't know what land lenses are but focusing light on the can would heat it up more.
There are 2 electrons in the overlapping region.
Chlorine is the second member of the halogen group which are form of family of elements that resemble one another very closely.
The electronic configuration of chlorine shows the arrangement of chlorine electrons within it's atom.
At the outer most shell of the atom is seven electrons, therefore requires only one electron each to attain the octet arrangement.
The overlapping of the orbitals indicates the chemical bond formed by sharing of electrons between atoms called covalent bonding.
To complete it's outer most shell, it will need to share electron with another chlorine atom.
Therefore, there are 2 electrons in the overlapping region.
Learn more here:
brainly.com/question/16396974
Answer:
When a substance gains or loses energy, its <u>temperature</u> or <u>state</u> changes. These two changes do <u>not</u> happen with respect to time; the temperature remains <u>the same</u> until the change of <u>state</u> is complete.
Explanation:
This statement is about energy and change of the state of the matter. By gaining or losing energy, the physical state of the matter can change into one another. Melting, freezing, condensation, evaporation, sublimation, and deposition are the processes that support to change the physical state of the matter. Change in state and change in the matter do not happen at the same time. A substance gains or loses energy to reach a specific temperature and remains constant until the physical change of matter is completed.