Answer:
2.5 moles of NaCl
Explanation:
The balanced chemical reaction equation is shown in the image. Since it takes 2 moles of Hydrochloric acid to form two moles of sodium. Chloride, then 2.5 moles of hydrochloric acid should also form 2.5 moles of sodium chloride according to the balanced reaction equation.
Answer:
Answer: a) 20g of H2O (18.02 g/mol) molecules=6.68x10^23
Explanation:
In order to find the amount of molecules of each of the options, we need to follow the following equation.

So, let´s get the number of molecules for each of the options.





the smalest number is in option a)
Best of luck.
The density of an ordinay rock is close to 3 g/cm^3 wihle the density of the paper clips is close to 8 g/cm^3 (the density of steel), then equal apparent volumes (same box) will contain different mass, being of course the mass of the box with paper clips much higher than that of the box with rocks.