Kc at 457 K is 4.88 × 10⁵.
<h3>
</h3><h3>What is Kc?</h3>
The ratio of the equilibrium concentrations of the products over the equilibrium concentrations of the reactants, each raised to the power of their respective stoichiometric coefficients, is known as the equilibrium constant, or Kc.
Kp = Kc(RT)∧Δn
Kp = 1.3 ˣ 10⁴
Δn = -1
Kc = 4.88 × 10⁵.
to learn more about Kc go to -
brainly.com/question/19340344
#SPJ4
Answer:
i

ii

Explanation:
From the question we are told that
The first temperatures is 
The second temperature is 
Generally the equation for the most highly populated rotational energy level is mathematically represented as
![J_{m} = [ \frac{RT}{2B}] ^{\frac{1}{2} } - \frac{1}{2}](https://tex.z-dn.net/?f=J_%7Bm%7D%20%3D%20%5B%20%5Cfrac%7BRT%7D%7B2B%7D%5D%20%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20-%20%5Cfrac%7B1%7D%7B2%7D)
Here R is the gas constant with value 
Also
B is given as 
Generally the energy require per mole to move 1 cm is 12 J /mole
So
will require x J/mole

=> 
So at the first temperature
![J_{m} = [ \frac{8.314 * 298 }{2* 2.928 }] ^{\frac{1}{2} } - 0.5](https://tex.z-dn.net/?f=J_%7Bm%7D%20%3D%20%5B%20%5Cfrac%7B8.314%20%2A%20298%20%20%7D%7B2%2A%20%202.928%20%7D%5D%20%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20-%200.5%20)
=> 
So at the second temperature
![J_{m} = [ \frac{8.314 * 373 }{2* 2.928 }] ^{\frac{1}{2} } - 0.5](https://tex.z-dn.net/?f=J_%7Bm%7D%20%3D%20%5B%20%5Cfrac%7B8.314%20%2A%20373%20%20%7D%7B2%2A%20%202.928%20%7D%5D%20%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20-%200.5%20)
=> 
<span>The answer is "A tetrahedral molecule has 4 regions of high electron density around the central atom. These molecules have central atoms with 0 lone pairs and 4 atoms bonded to them." Based on the octet rule, the atom must have 8 electrons to become stable. As a result, the molecule will not have lone pairs.</span>