Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Therefore, since the masses of both of the reactants are given, one computes the available moles of sulfuric acid and those moles of it consumed by the sodium hydroxide as shown below:

In such a way, since there is more available sulfuric acid than it that is consumed, the sodium hydroxide is the limiting reagent, consequently, the maximum mass of sodium sulfate turns out:

Best regards.
Hello!
Your answer is A, asthenosphere
<u>The asthenosphere is a part of the mantle</u>. It helps move the plates in the Earth.
It is <u>below the lithosphere,</u> between <u>80 and 200 km</u> below the surface.
Therfore, the asthenosphere is <u>the part of the mantle that is still a solid but flows like a thick, heavy liquid.</u>
<u />
Hope this helps!
Have a great day!
<span>294400 cal
The heating of the water will have 3 phases
1. Melting of the ice, the temperature will remain constant at 0 degrees C
2. Heating of water to boiling, the temperature will rise
3. Boiling of water, temperature will remain constant at 100 degrees C
So, let's see how many cal are needed for each phase.
We start with 320 g of ice and 100 g of liquid, both at 0 degrees C. We can ignore the liquid and focus on the ice only. To convert from the solid to the liquid, we need to add the heat of fusion for each gram. So multiply the amount of ice we have by the heat of fusion.
80 cal/g * 320 g = 25600 cal
Now we have 320 g of ice that's been melted into water and the 100 g of water we started with, resulting in 320 + 100 = 420 g of water at 0 degrees C. We need to heat that water to 100 degrees C
420 * 100 = 42000 cal
Finally, we have 420 g of water at the boiling point. We now need to pump in an additional 540 cal/g to boil it all away.
420 g * 540 cal/g = 226800 cal
So the total number of cal used is
25600 cal + 42000 cal + 226800 cal = 294400 cal</span>
Answer:
im the only answer your gonna get
Explanation:
Answer:
Molar mass
Explanation:
This is a counting unit which represents the mass in grams of a substance that make up one mole of the substance. This mass is calculated as follows:
Molar mass = Mass/ Number of moles
Units: grams/mol