The balanced equation for the above reaction is as follows;
3NO₂ + H₂O --> 2HNO₃ + NO
stoichiometry of NO₂ to NO is 3:1
molar volume is where 1 mol of any gas occupies a volume of 22.4 L
volume of gas is directly proportional to number of moles of gas.
therefore stoichiometry can be applied for volume as well.
volume ratio of NO₂ to NO is 3:1
volume of NO₂ reacted - 854 L
therefore volume of NO formed - 854 L /3 = 285 L
volume of NO formed - 285 L
Answer:
K^+ and NO3^-
Explanation:
In a balanced ionic equation, we usually see the species that react to yield the main product in the reaction.
Consider the reaction;
Pb(NO3)2(aq) +2 KI(aq) -------> PbI2(s) + 2KNO3(aq)
The main product in this reaction is PbI2. Hence the balanced ionic equation is;
Pb^2+(aq) + 2I^-(aq) ------> PbI2(s)
Notice that K^+ and NO3^- did not participate in this reaction. All ions that are part of the molecular equation but do not participate in the ionic reaction equation are called spectator ions. Hence K^+ and NO3^- are spectator ions in this reaction as can be seen clearly above.
To solve this problem we just need to use the rule of three:
150g..................395.1J
450g................xJ
x = 450*395.1/150 = 1185,3J
450.0 g of the substance completely reacted with oxygen will produce 1.1853 kJ(<span>kiloJoule</span>)
Answer:
Explanation:
Molarity = number of moles / volume
If 550 mL of a 3.50 M KCl solution are set aside and allowed to evaporate until the volume of the solution is 275 mL, which is half of 550 mL, the molarity of the solution with the same number of moles of KCl is 3.5 * 2 = 7.00 M