1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pochemuha
3 years ago
15

Can a body have increasing velocity with decreasing acceleration?

Physics
1 answer:
Sergio039 [100]3 years ago
3 0
Sure.  The acceleration may be decreasing, but as long as it stays
in the same direction as the velocity, the velocity increases.

I think you meant to ask whether the body can have increasing velocity
with negative acceleration.  That answer isn't simple either.

If the body's velocity is in the positive direction, then positive acceleration
means speeding up, and negative acceleration means slowing down.

BUT ... If the body's velocity is in the negative direction, then positive
acceleration means slowing down, and negative acceleration means
speeding up.

I know that's confusing. 

-- Take a piece of scratch paper, write a 'plus' sign at one edge and
a 'minus' sign at the other edge.  Those are the definitions of which
direction is positive and which direction is negative. 

-- Then sketch some cars ... one traveling in the positive direction, and
one driving in the negative direction.  Those are the directions of the
velocities.

-- Now, one car at a time:
. . . . . first push on the back of the car, in the direction it's moving;.
. . . . . then push on the front of the car, against its motion.
Each push causes the car to accelerate in the direction of the push.

When you see it on paper, all the positive and negative velocities
and accelerations will come clear for you.
You might be interested in
An object with a mass of 1.5kg changes its velocity from +15m/s to +22 during a time interval of 3.5 seconds. What Impulse was d
Shalnov [3]

B: 11 N.s is the answer

7 0
3 years ago
In the video "Shoot with great form" Klay says you should rest the ball on
goldfiish [28.3K]
Palm of your hand should be the correct answer if i remember correctly
3 0
3 years ago
An object is placed in front of a convex lens of a length 10cm. What is the nature of the image formed if the object distance is
Lady_Fox [76]

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Focal\:length=10\:cm}

\:\:\:\:\bullet\:\:\:\sf{Object \ distance = -15\:cm}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Nature \: of \:the\:image}

\\

{\mathfrak{\underline{\purple{\:\:\: Solution:-\:\:\:}}}} \\ \\

<h3>☯ <u>By using formula of Lens</u> </h3>

\\

\dashrightarrow\:\: {\boxed{\sf{\dfrac{1}{u} + \dfrac{1}{v} = \dfrac{1}{f}}}}

\\

\dashrightarrow\:\: \sf{\dfrac{1}{v}-\dfrac{1}{-15}=\dfrac{1}{10}}

\\

\dashrightarrow\:\: \sf{\dfrac{1}{v}+\dfrac{1}{15}=\dfrac{1}{10}}

\\

\dashrightarrow\:\: \sf{\dfrac{1}{v} = \dfrac{1}{10} - \dfrac{1}{15}}

\\

\dashrightarrow\:\: \sf{\dfrac{1}{v} = \dfrac{1}{30}}

\\

\dashrightarrow\:\: \sf{ v = 30 \ cm}

\\

<h3>☯ <u>Now, Finding the magnification </u></h3>

\\

\dashrightarrow\:\: \sf{ m = \dfrac{-30}{-15}}

\\

\dashrightarrow\:\: \sf{m = -2}

\\

<h3>☯ <u>Hence</u>,\\</h3>

\:\:\:\:\star\:\:\:\sf{Image \ distance = 30 \ cm}

\:\:\:\:\star\:\:\:\sf{Nature = Real \ \& \ inverted}

3 0
3 years ago
Indigenous people sometimes cooked in watertight baskets by placing enough hot rocks into the water to bring it to a boil. What
yaroslaw [1]

Answer:

The rock has a mass of 4.02 kg

Explanation:

<u>Step 1: </u>Data given

Mass of the rock = TO BE DETERMINED

Temperature of the rock = 500 °C

Mass of the water  =4.24 kg

⇒ loses 0.044kg as vapor

Initial temperature of the water = 29°C

Final temperature = 100°C

Specific heat of rock = 0.20 kcal/kg °C

Specific heat of water = 1kcal/kg°C

Latent heat of vaporization = 539 kcal/kg

<u>Step 2:</u> formules

Qlost,rock + Qgained,water = 0

Qtotal,water = Qwater +Qvapor

<u>Step 3: </u>Calculate Qvapor

Qvapor = mass of vapor * Latent heat of vapor

Qvapor = 0.044kg * 539 kcal/kg = 23.716 kcal

<u>Step 4: </u>Calculate Qwater

Qwater = mass of water * specific heat * Δtemperature

Qwater = 4.196 kg * 1kcal/kg°C *( 100-29)

Qwater = 297.916 kcal

<u>Step 5:</u> Calculate Qwater,total

Qwater,total = Qwater + Qvapor

Qwater,total = 23.716 kcal + 297.916 = 321.632 kcal

<u>Step 6</u>: Calculate Qrock

Qrock = mass of rock * specific heat rock * Δtemperature

Qrock = mass of rock * 0.20 kcal/kg°C * (100-500)

Qrock = mass of rock * -80 kcal/kg

<u>Step 7:</u> Calculate mass of rock

Qlost,rock + Qgained,water = 0

Qlost,rock = -Qgained,water

mass of rock * -80 kcal/kg = -321.632 kcal

mass of rock = 4.02 kg

The rock has a mass of 4.02 kg

7 0
3 years ago
(a) Neil A. Armstrong was the first person to walk on the moon. The distance between the earth and the moon is 3.85 108 m. Find
Goshia [24]

Answer:

It took 1.28 seconds to his voice to reach the Earth via radio waves.

Explanation:

The electromagnetic spectrum is the distribution of radiation due to the different frequencies at which it radiates and its different intensities, that radiation is formed by electromagnetic waves, which are transverse waves formed by an electric field and a magnetic field perpendicular to it.

The distribution of the radiation in the electromagnetic spectrum can also be given in wavelengths, but it is more frequent to work with it at frequencies, the highest being that of gamma rays, followed by X-rays, ultraviolet rays and the visible region , and those of lower frequencies, which correspond to infrared, microwave and radio waves.

Light propagates as electromagnetic wave in vacuum with a speed of 3x10^{8}m/s. Therefore, radio waves will have in vacuum the same speed.

Then, to know the time that it took for its voice, the next equation can be used:

c = \frac{d}{t}  (1)

Where c is the speed of light, d is the distance and t is the time.

Notice that t can be isolated from equation 1.

t = \frac{d}{c} (2)

t = \frac{3.85x10^{8} m}{3x10^{8}m/s}

t = 1.28s

Hence, it took 1.28 seconds to his voice to reach the Earth via radio waves.

7 0
3 years ago
Other questions:
  • you push your little sister on a swing and in 1.6 minutes you make 52 pushes what is the frequency of your swing? answer in unit
    9·1 answer
  • A car traveled at an average velocity of 97 km/hr. If it traveled for 4 hrs, how far did the driver get?
    9·2 answers
  • A force is applied to an object at rest with a mass of 100kg. A force twice as large is applied to another object at rest with a
    15·1 answer
  • What is the formula for moment in physics
    12·2 answers
  • Why does time slow down the closer you get to a black hole, I know that time slows down the faster you move through space and th
    11·1 answer
  • Which material BEST allows electricity to pass through it?
    11·1 answer
  • What is the primary way that metamorphic rocks forms?
    11·2 answers
  • An effective early childhood curriculum can be​
    13·1 answer
  • ANSWER THIS! Which of these statements about the Sun is the result of its closeness to Earth? A) It is the only star with a grav
    10·1 answer
  • A 70 kg bicyclist rides his 9.8 kg bicycle with a speed
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!