Ionising radiation (ionizing radiation) is radiation that carries enough energy to free electrons from atoms or molecules, thereby ionizing them. Ionizing radiation is made up of energetic subatomic particles, ions or atoms moving at high speeds (usually greater than 1% of the speed of light), and electromagnetic waves on the high-energy end of the electromagnetic spectrum.
Answer:
Assume two identical cans filled with two types of soup having same mass are rolling down on an inclined plane in same conditions. In terms of inertia different types of soup will indicate different viscosity. The higher viscosity fillings indicates more part of the soup mass is rotating together with the can’s body. This means that for the can with lower viscosity soup has a lower moment of inertia and the can with higher viscosity has higher moment of inertia while the same gravity makes them to roll.
incline angle = θ ; can's mass = m ; Radius of the can's = R , Angular acceleration for Can 1 = α1 ; Angular acceleration for Can 2 = α2
T1 = Inertia of Can with high viscosity soup
T2 = Inertia of Can with low viscosity soup
M1 rolling moment of Can 1
M2 rolling moment of Can 2
equation is given by
T1*α1 = M1 - (a)
T2*α2 = M2 - (b)
M1 = M2 = m*g*R*sin(θ). (c)
as assumed T1 > T2
from the three equation (a), (b) & (c)
the α2 > α1
Angular acceleration of Can 2 is higher than Can 1. Already stated that Can 1 has more viscous soup as compared to Can 2.
Assuming motion is on a straight path, the result of two positive components of a vector would also be a positive value since both are having positive signs and directions. The direction would be the same with the motion as well. Hope this answers the question. Have a nice day.
Answer:
L/2
Explanation:
Neglect any air or other resistant, for the ball can wrap its string around the bar, it must rotate a full circle around the bar. This means the ball should be able to swing to the top position where it's directly above the bar. By the law of energy conservation, this happens when the ball is at the same level as where it's previously released vertically. It means the swinging radius around the bar must be at least half of the string length.
So the distance d between the bar and the pivot should be at least L/2
Answer:
5.740 m
Explanation:
PE = mgh
900.0 J = (16.00 kg) (9.8 m/s²) h
h = 5.740 m