Answer:
A = m³/s³ = [L]³/[T]³ = [L³T⁻³]
B = m³s = [L³T]
Explanation:
We have the equation:
V = At³ + B/t
where, the dimensions of each variable are as follows:
V = m³ = [L]³
t = s = [T]
substituting these in equation, we get:
m³ = A(s)³ + B/s
for the homogeneity of the equation:
A(s)³ = m³
<u>A = m³/s³ = [L]³/[T]³ = [L³T⁻³]</u>
Also,
B/s = m³
<u>B = m³s = [L³T]</u>
4896
0.85 x 45 x 128 = 4896
Change in energy = specific heat capacity x mass x change in temperature
Answer:
21.35 cm^3
Explanation:
let the volume at the surface of fresh water is V.
The volume at a depth of 100 m is V' = 2 cm^3
temperature remains constant.
density of water, d = 1000 kg/m^3
Pressure at the surface of fresh water is atmospheric pressure,
P = Po = 1.013 x 10^5 N/m^2
The pressure at depth 100 m is P' = Po + hdg
P' = 
P' = 10.813 x 10^5 N/m^2
Use the Boyle's law
P V = P' V'

V = 21.35 cm^3
Thus, the volume of air bubble at the surface of fresh water is 21.35 cm^3.
The force required to slow the truck was -5020 N
Explanation:
First of all, we find the acceleration of the truck, which is given by

where
v is the final velocity
u is the initial velocity
t is the time
For the truck in this problem,
v = 11.5 m/s
u = 21.9 m/s
t = 2.88 s
So the acceleration is

where the negative sign means that this is a deceleration.
Now we can find the force exerted on the truck, which is given by Newton's second law:

where
m = 1390 kg is the mass of the truck
is the acceleration
And substituting,

So the closest answer among the option is -5020 N.
Learn more about acceleration and forces:
brainly.com/question/11411375
brainly.com/question/1971321
brainly.com/question/2286502
brainly.com/question/2562700
#LearnwithBrainly