Answer:
The solid rod BC has a diameter of 30 mm and is made of an aluminum for which the allowable shearing stress is 25 MPa. Rod AB is hollow and has an outer diameter of 25 mm; it is made of a brass for which the allowable shearing stress is 50 MPa.
Answer:
See attachment for chart
Explanation:
The IPO chart implements he following algorithm
The expressions in bracket are typical examples
<u>Input</u>
Input Number (5, 4.2 or -1.2) --- This will be passed to the Processing module
<u>Processing</u>
Assign variable to the input number (x)
Calculate the square (x = 5 * 5)
Display the result (25) ----> This will be passed to the output module
<u>Output</u>
Display 25
Answer:
il(t) = e^(-100t)
Explanation:
The current from the source when the switch is closed is the current through an equivalent load of 15 + 50║50 = 15+25 = 40 ohms. That is, it is 80/40 = 2 amperes. That current is split evenly between the two parallel 50-ohm resistors, so the initial inductor current is 2/2 = 1 ampere.
The time constant is L/R = 0.20/20 = 0.01 seconds. Then the decaying current is described by ...
il(t) = e^(-t/.01)
il(t) = e^(-100t) . . . amperes
Answer:
The elevation at the high point of the road is 12186.5 in ft.
Explanation:
The automobile weight is 2500 lbf.
The automobile increases its gravitational potential energy in
. It means the mobile has increased its elevation.
The initial elevation is of 5183 ft.
The first step is to convert Btu of potential energy to adequate units to work with data previously presented.
British Thermal Unit -
Now we have the gravitational potential energy in lbf*ft. Weight of the mobile is in lbf and the elevation is in ft. We can evaluate the expression for gravitational potential energy as follows:
Where m is the mass of the automobile, g is the gravity, W is the weight of the automobile showed in the problem.
is the final elevation and
is the initial elevation.
Replacing W in the Ep equation
Finally, the next step is to replace the variables of the problem.
The elevation at the high point of the road is 12186.5 in ft.