Answer:
Your question has some missing information below is the missing information
Given that ( specific heat of fluid A = 1 kJ/kg K and specific heat of fluid B = 4 kJ/kg k )
answer : 300 kW , 95°c
Explanation:
Given data:
Fluid A ;
Temperature of Fluid ( Th1 ) = 420° C
mass flow rate (mh) = 1 kg/s
Fluid B :
Temperature ( Tc1) = 20° C
mass flow rate ( mc ) = 1 kg/s
effectiveness of heat exchanger = 75% = 0.75
<u>Determine the heat transfer rate and exit temperature of fluid</u> <u>B</u>
Cph = 1000 J/kgk
Cpc = 4000 J/Kgk
Given that the exit temperatures of both fluids are not given we will apply the NTU will be used to determine the heat transfer rate and exit temperature of fluid B
exit temp of fluid B = 95°C
heat transfer = 300 kW
attached below is a the detailed solution
Answer:
The height of the water is 1.25 m
Explanation:
copper properties are:
Kc=385 W/mK
D=20x10^-3 m
gc=8960 kg/m^3
Cp=385 J/kg*K
R=10x10^-3 m
Water properties at 280 K
pw=1000 kg/m^3
Kw=0.582
v=0.1247x10^-6 m^2/s
The drag force is:

The bouyancy force is:

The weight is:

Laminar flow:

Reynold number:

Not flow region
For Newton flow region:







a) For the thermal efficiency we have

With the previously values we know that
and
(convert the min to sec)
Replacing the values

b) We use the formula of carnot efficiency

**Note that apply the formula of carnot cycle we need to consider that there is no exchange of heat, there is no friction and the reservior are completely insulated