I believe it’s loses two electrons.
Answer:
Br - C ≡ N
Explanation:
To draw the Lewis line-bond structure we need to bear in mind the octet rule, which states that in order to gain stability each <em>atom tends to share electrons until it has 8 electrons in its valence shell</em>.
- C has 4 e⁻ in its valence shell so it will form 4 covalent bonds.
- Br has 7 e⁻ in its valence shell so it will form 1 covalent bond.
- N has 5 e⁻ in its valence shell so it will form 3 covalent bonds.
The most stable structure that respects these premises is:
Br - C ≡ N
It does not have any H atom.
1) Write the balanced equation to state the molar ratios:
<span>3H2(g) + N2(g) → 2NH3(g)
=> molar ratios = 3 mol H2 : 1 mol N2 : 2 mol NH3
What volume of nitrogen is needed to produce 250.0 L of ammonia gas at STP?
First, convert the 250.0 L of NH3 to number of moles at STP .
Use the fact that 1 mole of gas at STP occupies 22.4 L
=> 250.0 L * 1mol/22.4 L = 11.16 L
Second, use the molar ratio to find the number of moles of N2 that produces 11.16 L of NH3
=> 11.16 L NH3 * [1 mol N2 / 2 mol NH3] = 5.58 mol N2
Third, convert 5.58 mol N2 into liters at STP
=> 5.58 mol N2 * [22.4 L/mol] = 124.99 liters
Answer: 124,99 liters
What volume of hydrogen is needed to produce 2.50 mol NH3 at STP?
First, find the number of moles of H2 that produce 2.50 mol by using the molar ratios:
2.50 mol NH3 * [3mol H2 / 2 mol NH3] = 3.75 mol H2
Second, convert the number of moles to liters of gas at STP:
3.75 mol * 22.4 L/mol = 84 liters of H2
Answer: 84 liters
</span>
Answer:
0.5M is the answer.
Explanation:
1M solution is the solution containing 1mole solute dissolved per litre of solution.
Using unitary method,
1000cc gives 1M.
1cc gives 1/1000M.
500 cc gives 500/1000M=0.5M
Answer:
Chicken nuggets
hope it helps have a nice day