Answer:
Explanation:
Assume that you have mixed 135 mL of 0.0147 mol·L⁻¹ NiCl₂ with 190 mL of 0.250 mol·L⁻¹ NH₃.
1. Moles of Ni²⁺

2. Moles of NH₃

3. Initial concentrations after mixing
(a) Total volume
V = 135 mL + 190 mL = 325 mL
(b) [Ni²⁺]

(c) [NH₃]

3. Equilibrium concentration of Ni²⁺
The reaction will reach the same equilibrium whether it approaches from the right or left.
Assume the reaction goes to completion.
Ni²⁺ + 6NH₃ ⇌ Ni(NH₃)₆²⁺
I/mol·L⁻¹: 6.106×10⁻³ 0.1462 0
C/mol·L⁻¹: -6.106×10⁻³ 0.1462-6×6.106×10⁻³ 0
E/mol·L⁻¹: 0 0.1095 6.106×10⁻³
Then we approach equilibrium from the right.
Ni²⁺ + 6NH₃ ⇌ Ni(NH₃)₆²⁺
I/mol·L⁻¹: 0 0.1095 6.106×10⁻³
C/mol·L⁻¹: +x +6x -x
E/mol·L⁻¹: x 0.1095+6x 6.106×10⁻³-x
![K_{\text{f}} = \dfrac{\text{[Ni(NH$_{3}$)$_{6}^{2+}$]}}{\text{[Ni$^{2+}$]}\text{[NH$_{3}$]}^{6}} = 2.0 \times 10^{8}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bf%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BNi%28NH%24_%7B3%7D%24%29%24_%7B6%7D%5E%7B2%2B%7D%24%5D%7D%7D%7B%5Ctext%7B%5BNi%24%5E%7B2%2B%7D%24%5D%7D%5Ctext%7B%5BNH%24_%7B3%7D%24%5D%7D%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D)
Kf is large, so x ≪ 6.106×10⁻³. Then
![K_{\text{f}} = \dfrac{\text{[Ni(NH$_{3}$)$_{6}^{2+}$]}}{\text{[Ni$^{2+}$]}\text{[NH$_{3}$]}^{6}} = 2.0 \times 10^{8}\\\\\dfrac{6.106 \times 10^{-3}}{x\times 0.1095^{6}} = 2.0 \times 10^{8}\\\\6.106 \times 10^{-3} = 2.0 \times 10^{8}\times 0.1095^{6}x= 345.1x\\x= \dfrac{6.106 \times 10^{-3}}{345.1} = 1.77 \times 10^{-5}\\\\\text{The concentration of Ni$^{2+}$ at equilibrium is $\large \boxed{\mathbf{1.77 \times 10^{-5}}\textbf{ mol/L}}$}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bf%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BNi%28NH%24_%7B3%7D%24%29%24_%7B6%7D%5E%7B2%2B%7D%24%5D%7D%7D%7B%5Ctext%7B%5BNi%24%5E%7B2%2B%7D%24%5D%7D%5Ctext%7B%5BNH%24_%7B3%7D%24%5D%7D%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5C%5C%5C%5C%5Cdfrac%7B6.106%20%5Ctimes%2010%5E%7B-3%7D%7D%7Bx%5Ctimes%200.1095%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5C%5C%5C%5C6.106%20%5Ctimes%2010%5E%7B-3%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5Ctimes%200.1095%5E%7B6%7Dx%3D%20345.1x%5C%5Cx%3D%20%5Cdfrac%7B6.106%20%5Ctimes%2010%5E%7B-3%7D%7D%7B345.1%7D%20%3D%201.77%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5C%5Ctext%7BThe%20concentration%20of%20Ni%24%5E%7B2%2B%7D%24%20at%20equilibrium%20is%20%24%5Clarge%20%5Cboxed%7B%5Cmathbf%7B1.77%20%5Ctimes%2010%5E%7B-5%7D%7D%5Ctextbf%7B%20mol%2FL%7D%7D%24%7D)
Rocks are part of our planet. They tell stories like how they were formed and which environment they belong in. And it also tells us things about the past, because rocks came long before humans did.
The ecosystem services provided by the each of the given examples are as follows:
- A cornfield in Kansas provides provisioning services.
- Bacteria that decompose waste along the Gulf Coast provides regulating services.
- Ocean currents that keep Pacific Northwest air cool and moist provides regulating services.
- Flower garden at a national landmark provides cultural services.
- Lumber from an oak tree provides provisioning services.
- Animals that eat seeds and then spread the seeds through their waste regulating services.
<h3>Ecosystem services</h3>
Ecosystem services are defined as the benefits derived by man from the surroundings ecosystems.
<h3>Categories of ecosystem services</h3>
The four categories of ecosystem services are:
- regulating services,
- provisioning services,
- cultural services, and
- supporting services
A cornfield in Kansas provides provisioning services.
Bacteria that decompose waste along the Gulf Coast provides regulating services.
Ocean currents that keep Pacific Northwest air cool and moist provides regulating services.
Flower garden at a national landmark provides cultural services.
Lumber from an oak tree provides provisioning services.
Animals that eat seeds and then spread the seeds through their waste regulating services.
Learn more about ecosystem services at: brainly.com/question/2191258
The end of the world as we know it could come in any number of ways, depending on who you ask. Some people believe global cataclysm will occur when Earth's magnetic poles reverse. When north goes south, they say, the continents will lurch in one direction or the other, triggering massive earthquakes, rapid climate change and species extinctions.
The most dramatic changes that occur when the poles reverse is a very large decrease of the total field intensity,
Earth's magnetic field takes between 1,000 and 10,000 years to reverse, and in the process, it greatly diminishes before it re-aligns. It's not a sudden flip, but a slow process, during which the field strength becomes weak, very probably the field becomes more complex and might show more than two poles for a while, and then builds up in strength and [aligns] in the opposite direction.