Answer:
4.5 x 10¹⁴ Hz
666.7 nm
1.8 x 10⁵ J
The color of the emitted light is red
Explanation:
E = energy of photons of light = 2.961 x 10⁻¹⁹ J
f = frequency of the photon
Energy of photons is given as
E = h f
2.961 x 10⁻¹⁹ = (6.63 x 10⁻³⁴) f
f = 4.5 x 10¹⁴ Hz
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of photon
Using the equation
c = f λ
3 x 10⁸ = (4.5 x 10¹⁴) λ
λ = 0.6667 x 10⁻⁶ m
λ = 666.7 x 10⁻⁹ m
λ = 666.7 nm
n = number of photons in 1 mole = 6.023 x 10²³
U = energy of 1 mole of photons
Energy of 1 mole of photons is given as
U = n E
U = (6.023 x 10²³) (2.961 x 10⁻¹⁹)
U = 1.8 x 10⁵ J
The color of the emitted light is red
Answer:
When you jump down, your kinetic is converted to potential energy of the stretched trampoline. The trampoline's potential energy is converted into kinetic energy, which is transferred to you, making you bounce up. At the top of your jump, all your kinetic energy has been converted into potential energy. Right before you hit the trampoline, all of your potential energy has been converted back into kinetic energy. As you jump up and down your kinetic energy increases and decrease.
C.reproducing is think and if wrong I'm so very sorry
Answer:
W=76.55 miles.metric tons
Explanation:
Given that
Weight on the earth = 12 tons
So weight on the moon =12/6 = 2 tons
( because at moon g will become g/6)
As we know that

Here x= 1100 miles
F 2 tons

So

We know that
Work = F. dx


![W=-2.4\times 10^6\left[\dfrac{1}{x}\right]_{1100}^{1140}](https://tex.z-dn.net/?f=W%3D-2.4%5Ctimes%2010%5E6%5Cleft%5B%5Cdfrac%7B1%7D%7Bx%7D%5Cright%5D_%7B1100%7D%5E%7B1140%7D)
![W=-2.4\times 10^6\left[\dfrac{1}{1140}-\dfrac{1}{1100}\right]](https://tex.z-dn.net/?f=W%3D-2.4%5Ctimes%2010%5E6%5Cleft%5B%5Cdfrac%7B1%7D%7B1140%7D-%5Cdfrac%7B1%7D%7B1100%7D%5Cright%5D)
W=76.55 miles.metric tons
K = 1/2mv^2 of kinetic energy. The change in the object's kinetic energy is equal to the net work performed on it.
<h3>What causes the kinetic energy to change?</h3>
Equations. Mass and the square of the velocity are directly related to translational kinetic energy. The difference between the end and starting kinetic energies is known as change in kinetic energy.
<h3>In solar panels, is there kinetic energy?</h3>
employing semiconductor-cell-based panels. technique that uses solar thermal systems to store solar energy. This heat is used directly or transformed into concentrated solar power, or the sum of the potential energy and kinetic energy of an object or system, and electricity.
Learn more about kinetic energy here:
brainly.com/question/26472013
#SPJ4