Quasar is famous for being an intergalactic object which is billions of years away from the earth yet can still be seen, unlike the other star body, unlike giant galaxies.
Hence, the fact that quasars can be detected from distances where even the biggest and most luminous galaxies cannot be seen means that "they must be intrinsically far more luminous than the brightest galaxies."
This condition, including other related evidence gotten in recent years concerning our galaxy, has shown that quasars are probably the central nuclei of very distant, very active galaxies.
The surprising thing was that quasars and active galaxies have a lot of mass in the center of the very small volume of the space.
Therefore, the surprising thing about quasars was that due to this mass and energy they are 100 times more luminous than Milky Way which means they have high recession velocity and a very large amount of red-shifting.
To learn more about quasars, refer: brainly.com/question/9965257
#SPJ4
Answer:
D. Increases from pole to equator
Explanation:
I majored in Science
I assume the block plows into the bank of sand with a velocity of 6 m/s and comes to a stop in 2 s.
Answer:
a.) a = 0 ms⁻²
b.) a = 9.58 ms⁻²
c.) a = 7.67 ms⁻²
Explanation:
a.)
Acceleration (a) is defined as the time rate of change of velocity
Given data
Final velocity = v₂ = 0 m/s
Initial velocity = v ₁ = 0 m/s
As the space shuttle remain at rest for the first 2 minutes i.e there is no change in velocity so,
a = 0 ms⁻²
b.)
Given data
As the space shuttle start from rest, So initial velocity is zero
Initial velocity = v₁ = 0 ms⁻¹
Final velocity = v₂ = 4600 ms⁻¹
Time = t = 8 min = 480 s
By the definition of Acceleration (a)

a = 9.58 ms⁻²
c.)
Given data
As the space shuttle is at rest for first 2 min then start moving, So initial velocity is zero
Initial velocity = v₁ = 0 ms⁻¹
Final velocity = v₂ = 4600 ms⁻¹
Time = t = 10 min = 600 s
By the definition of Acceleration (a)

a = 7.67 ms⁻²
Answer: ok
Explanation:
The molecules in hot air are moving faster than the molecules in cold air. Because of this, the molecules in hot air tend to be further apart on average, giving hot air a lower density. That means, for the same volume of air, hot air has fewer molecules and so it weighs less.