Answer: 9.3 x 10^ 18 g CO
Explanation:
Start by knowing that carbon monoxide is the compound CO. To convert molecules to grams, you first need to convert molecules to moles. This can be done using the conversion factor for Avogadro's Number:
(2.0 x 10^5 molecules CO) x 1 mol CO / 6.02 x 10^23 molecules CO
This cancels molecules CO.
Then, you can convert moles to grams, which is your desired quantity. You can find the number of grams for CO by looking at the periodic table and adding together their masses. C = 12 g and O = 16 g. Total of 28 g CO:
(1 mol CO) x 28 g CO / 1 mol CO
This cancels mol CO, which leaves grams CO.
Answer : The mass of sodium bromide added should be, 18.3 grams.
Explanation :
Molality : It is defined as the number of moles of solute present in kilograms of solvent.
Formula used :

Solute is, NaBr and solvent is, water.
Given:
Molality of NaBr = 0.565 mol/kg
Molar mass of NaBr = 103 g/mole
Mass of water = 315 g
Now put all the given values in the above formula, we get:


Thus, the mass of sodium bromide added should be, 18.3 grams.
<h3>Answer:</h3>
64 g O₂
<h3>General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 36 g H₂O
[Solve] x g O₂
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol O₂ → 2 mol H₂O
[PT] Molar Mass of O - 16.00 g/mol
[PT] Molar Mas of H - 1.01 g/mol
Molar Mass of O₂ - 2(16.00) = 32.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Stoichiometry</u>
- Set up conversion:

- Divide/Multiply [Cancel Units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
63.929 g O₂ ≈ 64 g O₂
C because it’s just leaning against the wall it’s not moving