Answer:
The answer is B.
Explanation:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations.
According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction.
Answer:
[IBr] = 0.049 M.
Explanation:
Hello there!
In this case, according to the balanced chemical reaction:

It is possible to set up the following equilibrium expression:
![K=\frac{[IBr]^2}{[I_2][Br_2]} =0.0110](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BIBr%5D%5E2%7D%7B%5BI_2%5D%5BBr_2%5D%7D%20%3D0.0110)
Whereas the the initial concentrations of both iodine and bromine are 0.50 M; and in terms of
(reaction extent) would be:

Which can be solved for
to obtain two possible results:

Whereas the correct result is 0.0245 M since negative results does not make any sense. Thus, the concentration of the product turns out:
![[IBr]=2x=2*0.0249M=0.049M](https://tex.z-dn.net/?f=%5BIBr%5D%3D2x%3D2%2A0.0249M%3D0.049M)
Regards!
<span>Naphthalene has a higher melting point than biphenyl because naphthalene is a polar compound while biphenyl is a non-polar compound.</span> Studies show <span>that polar compounds have higher melting and boiling points than nonpolar compounds. It is because polar compounds have strong intermolecular forces.</span>
Answer:
Mass = 179.9 g
Explanation:
Given data:
Volume of solution = 450 mL
Molarity of solution = 2.00 M
Mass in gram required = ?
Solution:
Volume of solution = 450 mL× 1 L / 1000 mL = 0.45 L
Molarity = number of moles of solute/ Volume of solution in L
2.00 M = number of moles of solute / 0.45 L
Number of moles of solute = 2.00 M × 0.45 L
M = mol/L
number of moles of solute = 0.9 mol
Mass of CaBr₂ in gram:
Mass = number of moles × molar mass
Mass = 0.9 mol ×199.89 g/mol
Mass = 179.9 g