First we will find the speed of the ball just before it will hit the floor
so in order to find the speed of the cart we will first use energy conservation
So by solving above equation we will have
now in order to find the momentum we can use
Answer:
The height of the cliff is 90.60 meters.
Explanation:
It is given that,
Initial horizontal speed of the stone, u = 10 m/s
Initial vertical speed of the stone, u' = 0 (as there is no motion in vertical direction)
The time taken by the stone from the top of the cliff to the bottom to be 4.3 s, t = 4.3 s
Let h is the height of the cliff. Using the second equation of motion in vertical direction to find it. It is given by :
h = 90.60 meters
So, the height of the cliff is 90.60 meters. Hence, this is the required solution.
Answer:
i think it's weakest
EDIT: It's net. I answered weakest but it was wrong and the correct answer was net. oops
Explanation:
if a strong force is acting on something it will push it away, meaning the object would go towards the weaker force
The internal pressure increases as the gas is heated