1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
3 years ago
8

What is NOT an example of Refraction. Remember to not give me an example.

Physics
1 answer:
MAXImum [283]3 years ago
7 0

There is reflection if that might work

You might be interested in
Water vapor enters a turbine operating at steady state at 500°C, 40 bar, with a velocity of 200 m/s, and expands adiabatically t
faltersainse [42]

Answer:

W = 5701 KW

Explanation:

From the question let inlet be labelled as point 1 and exit as point 2, for the fluid steam, we can get the following;

Inlet (1): P1 = 40 bar ; T1 = 500°C and V1 = 200 m/s

Exit(2) : At saturated vapour; P2 = 0.8 bar and V2 = 150 m/s

Volumetric flow rate = 15 m^(3)/s

Now, to solve this question, we assume constant average values, steeady flow and adiabatic flow.

Specific volume for steam at P2 = 0.8 bar in the saturated vapour state can be gotten from saturated steam tables(find a sample of the table attached to this answer).

So from the table,

v2 = 2.087 m^(3)/kg

Now, mass flow rate (m) = (AV) /v

Where AV is the volumetric flow rate.

Thus, the mass flow rate at exit could be calculated as;

m = 15/(2.087) = 7.17 kg/s

We also know energy equation could be defined as;

Q-W = m[(h1 - h2) + {(V2(^2) - (V1(^2)} /2)} + g(Z2 - Z1)]

Since the flow is adiabatic, potential energy can be taken to be zero. Therefore, we get;

-W = m[(h2 - h1) + {(V2(^2) - (V1(^2)} /2)}

From, table 2, i attached , at P1 = 40 bar and T1 = 500°C; specific enthalpy was calculated to be h1 = 3445.3 KJ/Kg

Likewise, at P2 = 0.8 bar; from the table, we get specific enthalpy as;

h2 = 2665.8 KJ/Kg

So we now calculate power developed;

W = - 7.17 [(2665.8 - 3445.3) + {(150^(2) - 200^(2))/2000 = 5701KW

Since the sign is not negative but positive, it means that the power is developed from the system.

4 0
3 years ago
Is the moon blue????????
Zolol [24]
No, according to many pictures taken in space, the moon is white. However, on rare occasions, the moon appears blue.

Hope this helps! ☺♥
7 0
3 years ago
Read 2 more answers
Waves that move the particles of the medium parallel to the direction in which the waves are traveling are called
Nikolay [14]

1. a. longitudinal waves.

There are two types of waves:

- Transverse waves: in transverse waves, the oscillations of the wave occur in a direction perpendicular to the direction of propagation of the wave

- Longitudinal waves: in longitudinal waves, the oscillations of the waves occur parallel to the direction in which the waves are travelling.

So, these types of waves are called longitudinal waves.


2. d. a medium

There are two types of waves:

- Electromagnetic waves: these waves are produced by the oscillations of electric and magnetic field, and they can travel both in a medium and also in a vacuum (they do not need a medium to propagate)

- Mechanical waves: these waves are produced by the oscillations of the particles in a medium, so they need a medium to propagate - therefore, the correct choice is d. a medium


3. a. AM/FM radio

Analogue signals consist of continuous signals, which vary in a continuous range of values. On the contrary, digital signals consist of discrete signals, which can assume only some discrete values. For AM and FM radios, signals are transmitted by using analogue signals.

5 0
3 years ago
A stretched string has a mass per unit length of 5.40 g/cm and a tension of 17.5 N. A sinusoidal wave on this string has an ampl
kondaur [170]

Answer:

Part a)

y_m = 0.157 mm

part b)

k = 101.8 rad/m

Part c)

\omega = 579.3 rad/s

Part d)

here since wave is moving in negative direction so the sign of \omega must be positive

Explanation:

As we know that the speed of wave in string is given by

v = \sqrt{\frac{T}{m/L}}

so we have

T = 17.5 N

m/L = 5.4 g/cm = 0.54 kg/m

now we have

v = \sqrt{\frac{17.5}{0.54}}

v = 5.69 m/s

now we have

Part a)

y_m = amplitude of wave

y_m = 0.157 mm

part b)

k = \frac{\omega}{v}

here we know that

\omega = 2\pi f

\omega = 2\pi(92.2) = 579.3 rad/s

so we  have

k = \frac{579.3}{5.69}

k = 101.8 rad/m

Part c)

\omega = 579.3 rad/s

Part d)

here since wave is moving in negative direction so the sign of \omega must be positive

4 0
3 years ago
5. A construction worker on a high-rise building is on a platform suspended between two cables as illustrated below. The constru
Natalka [10]

Answer:

a) Tc = 750 [N]  ;b) See the explanation below.

Explanation:

To solve this problem, we first need a graphical explanation of this, as well as knowing the corresponding questions. Therefore, a search was carried out in google, in the attached image we will find a graphical description of the problem.

b)

The solution of this type of problem corresponds to the use of Newton's third law, applying static which tells us that the sum of the forces in a system in equilibrium without movement must be equal to zero.

a)

In this way we can find by means of a sum of forces on the y axis equal to zero:

- 850 - 450 + 550 + Tc = 0

Tc = 750 [N]

4 0
3 years ago
Other questions:
  • Olivia bought new gym shoes to play volleyball because she kept slipping when she ran in her old shoes .how will the new soles h
    11·2 answers
  • How did scientists draw boundaries around the plate
    10·1 answer
  • which actions most likely cause the domains within a material to lose their alignment and become more randomized
    10·2 answers
  • Is energy released or absorbed during the formation of a solution?
    7·1 answer
  • Steven carefully places a m = 1.85 kg wooden block on a frictionless ramp so that the block begins to slide down the ramp from r
    10·1 answer
  • Is 45 m/s2 a scalar or a vector quantity and how do you know?
    11·1 answer
  • What affect, if any, does increasing the speed of the plunger have on the wavelength of the waves
    12·1 answer
  • The angular velocity of an object is given by the following equation: ω(t)=(5rads3)t2\omega\left(t\right)=\left(5\frac{rad}{s^3}
    6·1 answer
  • A 4-kg object is moving with a speed of 5 m/s at a height of 2 m. The kinetic
    8·1 answer
  • when charge 2 is 3.0 m away from charge 1, the strength of the electric force on charge 2 by charge 1 is 0.80 n. if instead, cha
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!