Answer:
1.54 kg
Explanation:
mass of first block (m) = 0.76 kg
acceleration due to gravity (g) = 9.8 m/s
what is the mass (m) of the second block
mg = kx
where m is the mass, g is the acceleration due to gravity, k is the
spring constant and x is the extension
0.76 x 9.8 = kx
7.5 = kx
k = 7.5/x ... equation 1
- when a second block is attached to the first one the amount of stretch triples (this means that extension (x) = 3x)
therefore the new mass becomes m + 0.76 and the extension
becomes 3x
with the new mass and extension, mg = kx now becomes
(m+0.76)g = k(3x) ... equation 2
Recall that k = 7.5/x from equation 1, substituting this value of k into
equation 2 we have
(m+0.76)g =
× (3x)
(m+0.76)g = 7.5 × 3
substituting the value of g = 9.8 m/s^{2}
(m + 0.76) x 9.8 = 7.5 x 3
m + 0.76 = 22.5 ÷ 9.8
m + 0.76 = 2.3
m = 2.3 - 0.76 = 1.54 kg
The final atmospheric pressure is 
Explanation:
Assuming that the temperature of the air does not change, we can use Boyle's law, which states that for a gas kept at constant temperature, the pressure of the gas is inversely proportional to its volume. In formula,

where
p is the gas pressure
V is the volume
The equation can also be rewritten as

where in our problem we have:
is the initial pressure (the atmospheric pressure at sea level)
is the initial volume
is the final pressure
is the final volume
Solving the equation for p2, we find the final pressure:

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
I believe it’s force but i’m not really sure.