Answer:
the object has least potential energy at mean position of the SHM
Explanation:
If a block is connected with a spring and there is no resistive force on the system
In this case the total energy of the system is always conserved and it will change from one form to another form
So here we will say that
Kinetic energy + Potential energy = Total Mechanical energy
As we can say that total energy is conserved so here we have least potential energy when the system has maximum kinetic energy
So here we also know that at mean position of the SHM the system has maximum speed and hence maximum kinetic energy.
So the object has least potential energy at mean position of the SHM
The products of a chemical reaction are the substances that are changed and the chemicals on the right side of a chemical equation. The correct options are B and C.
<h3>What is chemical reaction?</h3>
The chemical reaction is the reaction between two reactants which led to the formation of products.
The products are substances which forms after reaction. The reactants are the substances which are original materials.
The reactants lie on the left side and products lie on the right side of the reaction.
Thus, the correct options are B and C.
Learn more about chemical reaction.
brainly.com/question/22817140
#SPJ1
Answer:
Acid mine drainage is dissolved toxic materials wash from mines into nearby lakes and streams.
Explanation:
Acid mine drainage is the flow of acidic water with pH typically between 2 and 4, and high concentrations of other dissolved toxic materials from mines into nearby lakes and streams. It mainly occurs during metal sulfide mining, when the metal sulfide ore such as pyrite (FeS2) is exposed to water and oxygen from air to produce soluble iron and sulfuric acid.
Microorganisms, especially acidophile bacteria like Acidithiobacillus ferrooxidans grow by pyrite oxidation, i.e., oxidizing the Fe²⁺ in pyrite to Fe³⁺, which again react with pyrite and water to produce sulfuric acid. Then the acidic water flows into nearby water sources and reduces the pH value of water in those sources. As a result, heavy metals such as copper, lead, mercury, etc in other mineral ores also get dissolved into the water. The action of acidophile bacteria also increases the rate and degree of acid-mine drainage process.
The acid mine drainage causes water pollution and adversely affect the aquatic plants and animals. It also results in the contamination of drinking water, corrosion of infrastructures such as bridges, etc.
Answer: Its A because i had the same question and it was a
Answer:

Explanation:
The density changes means that the length in the direction of the motion is changed.
Therefore,

Given :
Side, b = h = 0.13 m
Mass, m = 3.3 kg
Density = 8100 
So,


l = 0.024 m
Then for relativistic length contraction,







Therefore, the speed of the observer relative to the cube is 0.9833 c (in the units of c).