In division, exponents with the same base are subtracted.
example:
Answer:
b = 1, c = -1 and d = 4
Step-by-step explanation:
To solve this question the rule of multiplicity of a polynomial is to be followed.
If the multiplicity of a polynomial is even at a point, graph of the polynomial will touch the x-axis.
If the multiplicity of the polynomial is odd, graph will cross the x-axis at that point.
From the graph of function 'f',
f(x) = (x - b)(x - c)²(x - d)³
Since, graph of the function 'f' crosses x-axis at x = 1 and x = 4, multiplicity will be odd and touches the x-axis at x = -1 multiplicity will be even.
So the function will be,
f(x) = (x - 1)[x - (-1)]²(x - 4)³
Therefore, b = 1, c = -1 and d = 4 will be the answer.
<u>Answer:</u>
is changing more quickly.
<u>Step-by-step explanation:</u>
This is because the equation
has a larger slope. The speed of change is determined entirely by the slope; the larger the slope, the faster the line goes up or down. It doesn't matter if it's negative or positive. -29 is the slope of the equation.
<em>Please mark Brainliest.</em>
Its known as the signature line
Answer:
The 90% confidence interval for the difference in mean (μ₁ - μ₂) for the two bakeries is; (<u>49</u>) < μ₁ - μ₂ < (<u>289)</u>
Step-by-step explanation:
The given data are;
Bakery A
<em> </em>= 1,880 cal
s₁ = 148 cal
n₁ = 10
Bakery B
<em> </em>= 1,711 cal
s₂ = 192 cal
n₂ = 10

df = n₁ + n₂ - 2
∴ df = 10 + 18 - 2 = 26
From the t-table, we have, for two tails,
= 1.706


≈ 178
Therefore, we get;

Which gives;

Therefore, by rounding to the nearest integer, we have;
The 90% C.I. ≈ 49 < μ₁ - μ₂ < 289