Answer:
Rolling friction is much smaller than sliding friction because Rolling friction is considerably less than sliding friction as there is no work done against the body that is rolling by the force of friction. For a body to start rolling a small amount of friction is required at the point where it rests on the other surface, else it would slide instead of roll.
Rolling Friction example: Anything with weels (cars,skateboards) or a ball rooling.
Sliding Friction example: Bicycle brakes,skinning your knee walking,writing.
Answer:
a) fem = - 2.1514 10⁻⁴ V, b) I = - 64.0 10⁻³ A, c) P = 1.38 10⁻⁶ W
Explanation:
This exercise is about Faraday's law
fem =
where the magnetic flux is
Ф = B x A
the bold are vectors
A = π r²
we assume that the angle between the magnetic field and the normal to the area is zero
fem = - B π 2r dr/dt = - 2π B r v
linear and angular velocity are related
v = w r
w = 2π f
v = 2π f r
we substitute
fem = - 2π B r (2π f r)
fem = -4π² B f r²
For the magnetic field of Jupiter we use the equatorial field B = 428 10⁻⁶T
we reduce the magnitudes to the SI system
f = 2 rev / s (2π rad / 1 rev) = 4π Hz
we calculate
fem = - 4π² 428 10⁻⁶ 4π 0.10²
fem = - 16π³ 428 10⁻⁶ 0.010
fem = - 2.1514 10⁻⁴ V
for the current let's use Ohm's law
V = I R
I = V / R
I = -2.1514 10⁻⁴ / 0.00336
I = - 64.0 10⁻³ A
Electric power is
P = V I
P = 2.1514 10⁻⁴ 64.0 10⁻³
P = 1.38 10⁻⁶ W
Answer:
The objective lens is an optical tool used to focus an image.
Explanation:
The objective lens is an optical tool that collects light emitted by an object under observation and focuses the rays of light in order to form a real and magnified image They are used in optical instruments like microscopes, cameras, telescopes, etc. and are also referred as objective or object glasses.
The type of energy that is produced by the system that is described is heat energy. The correct answer is D.
<span>Radio waves just like light waves can be reflected refracted and diffracted and polarized. The answer is True. </span>These characteristics are the common phenomena for electromagnetic (EM) waves, and Radio Waves are electromagnetic Waves so much so that they obey reflection, refraction, and diffraction.