I don't know about 14, but 15 is (4), because a liquid draws in heat to turn into a gas. 16 is (2), because to turn into a cold solid, something has to release heat.
Answer:1) It is due to large cohesive force acting between the molecules of mercury that the droplets of mercury when brought in contact pulled together to form a bigger drop in order to make potential energy minimum. The temperature of this bigger drop increases since the total surface area decreases.
2) A spherical shape has the minimum surface area to volume ratio of all geometric forms. When two drops of a liquid are brought in contact, the cohesive forces between their molecules coalesce the drops into a single larger drop. This is because, the volume of the liquid remaining the same, the surface area of the resulting single drop is less than the combined surface area of the smaller drops. The resulting decrease in surface energy is released into the environment as heat.
Answer:
boom Corvette Corvette pop in the popular vet like that like that why you walk like that why you talk like that like I said boom boom boom I'm in the cold Mira, she needs to be back I remember seeing everyone Nee u i
Answer:We are already given with the mass of the Xe and it is 5.08 g. We can calculate for the mass of the fluorine in the compound by subtracting the mass of xenon from the mass of the compound.
mass of Xenon (Xe) = 5.08 g
mass of Fluorine (F) = 9.49 g - 5.08 g = 4.41 g
Determine the number of moles of each of the element in the compound.
moles of Xenon (Xe) = (5.08 g)(1 mol Xe / 131.29 g of Xe) = 0.0387 mols of Xe
moles of Fluorine (F) = (4.41 g)(1 mol F/ 19 g of F) = 0.232 mols of F
The empirical formula is therefore,
Xe(0.0387)F(0.232)
Dividing the numerical coefficient by the lesser number.
XeF₆
Explanation: