Answer:
i = 0.3326 L
Explanation:
A fixed string at both ends presents a phenomenon of standing waves, two waves with the same frequency that are added together. The expression to describe these waves is
2 L = n λ n = 1, 2, 3…
The first harmonic or leather for n = 1
Wave speed is related to wavelength and frequency
v = λ f
λ = v / f
Let's replace in the first equation
2 L = 1 (v / f₁)
For the shortest length L = L-l
2 (L- l) = 1 (v / f₂)
These two equations form our equation system, let's eliminate v
v = 2L f₁
v = 2 (L-l) f₂
2L f₁ = 2 (L-l) f₂
L- l = L f₁ / f₂
l = L - L f₁ / f₂
l = L (1- f₁ / f₂)
.
Let's calculate
l / L = (1- 309/463)
i / L = 0.3326
Answer:
Explanation:
Work = Force times displacement. Therefore,
W = 3150(75.5) so
W = 238000 N*m
Answer:
<em>faster and at a higher luminosity and temperature.</em>
Explanation:
A protostar looks like a star but its core is not yet hot enough for fusion to take place. The luminosity comes exclusively from the heating of the protostar as it contracts. Protostars are usually surrounded by dust, which blocks the light that they emit, so they are difficult to observe in the visible spectrum.
A protostar becomes a main sequence star when its core temperature exceeds 10 million K. This is the temperature needed for hydrogen fusion to operate efficiently.
Stars above about 200 solar masses (Higher mass) generate power so furiously that gravity cannot contain their internal pressure. These stars blow themselves apart and do not exist for long if at all. A protostar with less than 0.08 solar masses never reaches the 10 million K temperature needed for efficient hydrogen fusion. These result in “failed stars” called brown dwarfs which radiate mainly in the infrared and look deep red in color. They are very dim and difficult to detect, but there might be many of them, and in fact they might outnumber other stars in the universe.
That is why higher mass protostars enter the main sequence at a <em>faster and at a higher luminosity and temperature.</em>
Answer:
Bohr's greatest contribution to modern physics was the atomic model. ... Bohr was the first to discover that electrons travel in separate orbits around the nucleus and that the number of electrons in the outer orbit determines the properties of an element
Explanation:
Answer:
Recall that Earth’s radius is 6.38 × 106 m and Earth’s mass is 5.97 × 1024 kg.
Explanation: