Answer:
If energy is conserved, then the sum of the potential energy and the kinetic energy is a constant.
Assuming the proton starts from rest, so it's kineitc energy is zero, but it has a potential energy, PE equal to:
PE = qV
where q =1.6 x 10^-19 C
and V = 1.00 V
Assuming the proton no longer experiences the potential energy and it is all converted to kinetic energy then:
PE* = 0,
KE* = 1/(2mv^2)
Now since
PE + KE = Total energy =PE* + KE*
Therefore,
qV + 0 = 0 + 1/2mv^2
Or
KE = qV = 1.6 10^-19 J
Answer:
1. Hot air is less dense and has moved upward allowing cool air to move downward which is less dens
(Convection current)
2. The ceiling has transferred heat to him by radiation.
Explanation:
During the day when air is heated as a result of the ceiling transferring heat to it, it becomes less dens and it gains energy, which make it lighter in weight than cooler air, this hot air moves upward allowing cooler air to move downward.
Hence the expression of ω in terms of m and k is

Given the expressions;

Equating both expressions we will have;

Divide both equations by 2π

Square both sides

Take the square root of both sides

Hence the expression of ω in terms of m and k is

False. there's less gravitational force in space than on earth
Answer:
V = 10.88 m/s
Explanation:
V_i =initial velocity = 0m/s
a= acceleration= gsinθ-
cosθ
putting values we get
a= 9.8sin25-0.2cos25= 2.4 m/s^2
v_f= final velocity and d= displacement along the inclined plane = 10.4 m
using the equation


v_f= 7.04 m/s
let the speed just before she lands be "V"
using conservation of energy
KE + PE at the edge of cliff = KE at bottom of cliff
(0.5) m V_f^2 + mgh = (0.5) m V^2
V^2 = V_f^2 + 2gh
V^2 = 7.04^2 + 2 x 9.8 x 3.5
V = 10.88 m/s