Y =ax² + bx +c
1) Point (0,7)
7 = a*0² +b*0 +c
c = 7
y=ax² + bx + 7
2) Point (1,4)
4=a*1² + b*1 + 7, ----> 4 = a +b + 7, ------>
a+b= - 3
3) Point (2, 5)
5=a*2² + b*2 + 7, ----> 5=4a+2b +7,---> -2=4a+2b, ---->
-1=2a + b
4)
a+b= - 3, ----> b= -3 - a (substitute in the second equation)
2a+b= -1
2a - 3 - a = -1, ----> a - 3 = -1,
a =2
5) a+b= - 3
2 + b = -3
b = -5
y=2x² - 5x + 7
Answer:
Theanswer is 4/27.
Step-by-step explanation:
given that, F(x) = 4×(1/3)^x
now , F(3)= 4×(1/3)^3 ( putting value of x)
or, F(3) = 4×(1/27)
therefore, F(3)= 4/27... ans
<em><u>hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em>
The correct answer is: [C]: " c(x) = –8x²<span> + 3x – 5 " .
_________________________________________________________
The quadratic function takes the form of:
_________________________________________________________
" f(x) = ax</span>² + bx + c " .
_________________________________________________________
Answer choice: [C]: " c(x) = –8x² + 3x – 5 " ;
is the only answer choice provided that takes that form of the quadratic function:
" f(x) = ax² + bx + c " :
in which: " a = -8 " ; " b = 3 " ; " c = -5 " .
____________________________________________________
The partial products would be 10 multiply 40, 10 multiply 3, 7 multiply 40, and 7 multiply 3.
Answer:
22
Step-by-step explanation:
Pretend the 10 values in the first sentence are a,b,c,d,e,f,g,h,i,j
Pretend the addition 5 values is k,l,m,n,o
So the mean of all the 15 data is (a+b+c+d+e+f+g+h+i+j+k+l+m+n+o)/15=20
So the sum of all 15 data is a+b+c+d+e+f+g+h+i+j+k+l+m+n+o=300 since 15(20)=300
Now let's look at the first 10: We have their mean so we can write:
(a+b+c+d+e+f+g+h+i+j)/10=19
so a+b+c+d+e+f+g+h+i+j=190 since 10(19)=190
So that means using our first sum equation and our equation sum equation we have
190+k+l+m+n+o=300
k+l+m+n+o=300-190
k+l+m+n+o= 110
So the average of those 5 numbers mentioned in your problem is 110/5=22