Answer: At STP, a mole of gas takes up 22.4 Liters. The 22.4 Liters/mole quantity can be derived from the Ideal Gas Law, PV = nRT, plugging in STP conditions for P and T, and solving for V/n, which gets 22.4 Liters/mole.
Explanation:
Hello Olivia!!!
<span>Q.) Describe at least two geological events that can occur at a divergent boundary.
</span>
A.)Most active divergent plate boundaries occur between oceanic plates and exist as mid-oceanic ridges. Divergent boundaries also form volcanic islands which occur when the plates move apart to produce gaps which molten lava rises to fill.
Hope this can help!!!
Answer:
The negatively charged rod will force a stream of water away from the rod because of the "attractive force. "
Explanation:
As we know that water molecules have been randomly arranged. So when a negatively charged rod is put near the stream of water, the molecules present in the water start rotating, unless the positive side will be close to the negative side of the rod. Which results in the generation of the attraction force. Hence, the stream of the water forces away the negatively charged rod. When the water molecules have polarized molecules in it the effect will be stronger than the dust.
Answer:
C
Explanation:
Alcohols are organic molecules characterized majorly by the presence of the OH group in their molecule. The OH group is majorly responsible for several of their characteristics. This include the formation of hydrogen bonds between alcohol molecules. While this makes them more inorganic than most organic compounds, comparatively the hydrogen bonding formed in alcohols is not as strong as that which is present in water.
The higher strength of the hydrogen bonding is responsible for some comparable properties. While water boils at a temperature of 100 degrees Celsius, alcohol boils at a temperature of 78 degrees Celsius. This is an evidence to the fact that hydrogen bonding in alcohol is less stronger that that in water.
Answer:
(C) Mass of KCl(s), mass of H20, initial temperature of the water, and final temperature of the solution
Explanation:
molar enthalpy of solution of KCl(s) is heat evolved or absorbed when one mole of KCl is dissolved in water to make pure solution . The heat evolved or absorbed can be calculated by the following relation.
Q = msΔt where m is mass of solution or water , s is specific heat and Δt is change in temperature of water .
So data required is mass of water or solution , initial and final temperature of solution , specific heat of water is known .
Now to know molar heat , we require mass of solute or KCl dissolved to know heat heat absorbed or evolved by dissolution of one mole of solute .