It has mass and takes up space is correct.
Transporting metals, ions, water-insoluble molecules, and hormones. .... When erythrocytes are removed from circulation,
Use Charles' Law: V1/T1 = V2/T2. We assume the pressure and mass of the helium is constant. The units for temperature must be in Kelvin to use this equation (x °C = x + 273.15 K).
We want to solve for the new volume after the temperature is increased from 25 °C (298.15 K) to 55 °C (328.15 K). Since the volume and temperature of a gas at a constant pressure are directly proportional to each other, we should expect the new volume of the balloon to be greater than the initial 45 L.
Rearranging Charles' Law to solve for V2, we get V2 = V1T2/T1.
(45 L)(328.15 K)/(298.15 K) = 49.5 ≈ 50 L (if we're considering sig figs).
Answer: There are 6.9 mol of
are required to react completely with 2.30 mol of S.
Explanation:
The given reaction equation is as follows.

Here, 1 mole of S is reaction with 3 moles of
which means 1 mole of S requires 3 moles of
.
Therefore, moles of
required to react completely with 2.30 moles S are calculated as follows.

Thus, we can conclude that there are 6.9 mol of
are required to react completely with 2.30 mol of S.
Answer:
a group of electrochemical cells that can be recharged