I hope this helps you
3.2x-3.4+4x-2
6x-12+4x-2
10x-14
Answer:
368
Step-by-step explanation:
If you're working with complex numbers, then I'm sure you're comfortable with plotting them on a complex-plane ... real part of the number along the x-axis, and imaginary part of the number along the y-axis.
When you look at it that way, your two points are simply two points on the x-y plane:
4 - i ===> (4, -1)
-2 + 3i ===> (-2, 3) .
The distance between them is
D = √ (difference in 'x')² + (difference in 'y')²
= √ (6)² + (4)²
= √ (36 + 16)
= √ (52)
= 7.211 (rounded)
Question 14, Part (i)
Focus on quadrilateral ABCD. The interior angles add to 360 (this is true for any quadrilateral), so,
A+B+C+D = 360
A+90+C+90 = 360
A+C+180 = 360
A+C = 360-180
A+C = 180
Since angles A and C add to 180, this shows they are supplementary. This is the same as saying angles 2 and 3 are supplementary.
==================================================
Question 14, Part (ii)
Let
x = measure of angle 1
y = measure of angle 2
z = measure of angle 3
Back in part (i) above, we showed that y + z = 180
Note that angles 1 and 2 are adjacent to form a straight line, so we can say
x+y = 180
-------
We have the two equations x+y = 180 and y+z = 180 to form this system of equations

Which is really the same as this system

The 0s help align the y terms up. Subtracting straight down leads to the equation x-z = 0 and we can solve to get x = z. Therefore showing that angle 1 and angle 3 are congruent. We could also use the substitution rule to end up with x = z as well.
1,5,9,13,17,21,25,29..., 4n+1
in general terms of an arithmetic sequence with the first term A0 and common differences d,