by angular momentum conservation we will have
angular momentum of child + angular momentum of merry go round = 0
angular momentum of child = mvR
m = mass of child
R = radius of child
v = speed = 2 m/s
now let's say moment of inertia of merry go round is I
so we will have


so merry go round will turn in opposite direction with above speed
Complete Question
A proton is located at <3 x 10^{-10}, -5*10^{-10} , -5*10^{-10}> m. What is r, the vector from the origin to the location of the proton
Answer:
The vector position is 
Explanation:
From the question we are told that
The position of the proton is
Generally the vector location of the proton is mathematically represented as

So substituting values

Answer:
x ’= 1,735 m, measured from the far left
Explanation:
For the system to be in equilibrium, the law of rotational equilibrium must be fulfilled.
Let's fix a reference system located at the point of rotation and that the anticlockwise rotations have been positive
They tell us that we have a mass (m1) on the left side and another mass (M2) on the right side,
the mass that is at the left end x = 1.2 m measured from the pivot point, the mass of the right side is at a distance x and the weight of the body that is located at the geometric center of the bar
x_{cm} = 1.2 -1
x_ {cm} = 0.2 m
Σ τ = 0
w₁ 1.2 + mg 0.2 - W₂ x = 0
x =
x = 
let's calculate
x =
2.9 1.2 + 4 0.2 / 8
x = 0.535 m
measured from the pivot point
measured from the far left is
x’= 1,2 + x
x'= 1.2 + 0.535
x ’= 1,735 m
Answer:
You could move something across the Earth with a little push. It would make fuel really efficient on those pathways. You could make a floor that is impossible to walk on. Everybody would just fall without traction.
Explanation: