Answer:
g' = 13.5 m/s²
Explanation:
The acceleration due to gravity on surface of earth is given by the formula:
g = GMe/Re² --------------- euation 1
where,
g = acceleration due to gravity on surface of earth
G = Universal Gravitational Constant
Me = Mass of Earth
Re = Radius of Earth
Now, the the acceleration due to gravity on the surface of Kepler-62e is:
g' = GM'/R'² --------------- euation 1
where,
g' = acceleration due to gravity on surface of Kepler-62e
G = Universal Gravitational Constant
M' = Mass of Kepler-62e = 3.57 Me
R' = Radius of Kepler-62e = 1.61 Re
Therefore,
g' = G(3.57 Me)/(1.61 Re)²
g' = 1.38 GMe/Re²
using equation 1:
g' = 1.38 g
where,
g = 9.8 m/s²
Therefore,
g' = 1.38(9.8 m/s²)
<u>g' = 13.5 m/s²</u>
Answer:
(a). The time is 26.67 sec.
(b). The distance traveled during this period is 1066.9 m.
Explanation:
Given that,
Speed = 80 m/s
Acceleration = 3 m/s
Initial velocity = 0
(a). We need to calculate the time
Using equation of motion


Put the value into the formula


The time is 26.67 sec.
(b). We need to calculate the distance traveled during this period
Using equation of motion



The distance traveled during this period is 1066.9 m.
Hence, This is the required solution.
The time (t) it will take for the train to reach to Grenoble is the quotient when the distance (d) is divided by the speed (s). That is,
t = d / s
Substituting the known values,
t = 480 km / 180 km/h
t = 2.667 h
Thus, it will take approximately 2.7 h to reach Grenoble. The answer is letter D.
Answer: M = 6.13 × 10^18 kg
Explanation:
g = GM/r2,
Where
The mass M of the asteroid = ?
The radius r = 110000 m
g = 0.0338 m/s^2
G is the gravitational constant.
SI units its value is approximately 6.674×10^−11m3⋅kg−1⋅s−2
Using the formula
g = GM/r2
Cross multiply
GM = gr^2
6.674×10^-11M = 0.0338 × 110000^2
M = 408×10^6/6.674×10^-11
M = 6.13 × 10^18 kg