Answer: 10Nm or 10J
Explanation:
Given the following :
Force (f) = 5
Distance (d) = 2m
Calculate the kinetic energy assuming no friction
Work done = force × distance
Work done = 5N × 2m = 10Nm
Recall :
Work done = ΔK.E ( change in kinetic energy)
Therefore, kinetic energy of the book after sliding = ΔK. E, which is equal to work done.
Hence, K. E of book after sliding is 10Nm
<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3
Answer:
In a chemical reaction, the atoms and molecules that interact with each other are called reactants. ... No new atoms are created, and no atoms are destroyed. In a chemical reaction, reactants contact each other, bonds between atoms in the reactants are broken, and atoms rearrange and form new bonds to make the products.
<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3
<u>Answer:</u>
This is due to the apparent movement of the celestial bodies, seen from an observer centered on the Earth. If we did not have knowledge of the advances of science and the latest discoveries, we would think that the Earth is the center of the universe.
For example, for an observer on Earth as a reference system, the Sun moves every day from east to west, as do the planets and all the stars that we observe at night, which leads the observer to believe that those in motion are these bodies outside in the sky while the earth is still and fixed in the universe.
Keep in mind that this theory of geocentrism was widely accepted for a long time in antiquity, until the astronomer Nicolaus Copernicus proposed a completely different and opposite idea, heliocentrism (universe centered on the Sun).
However, at present it is known and accepted that the universe has no center, that the Earth revolves around the Sun and that in reality all the bodies of the universe are in movement.
Answer:
0.05 rad/s
Explanation:
7.8 km = 7800 m
For the residents inside the space cylinder to experience the same gravitation acceleration g = 9.81m/s2 on Earth, the centripetal acceleration must be the same as g
But centripetal acceleration is product of angular velocity squared and radius of rotation r