<h3><u>Answer</u>;</h3>
A. When a reaction is at chemical equilibrium, a change in the system will cause the system to shift in the direction that will balance the change and help the reaction regain chemical equilibrium.
<h3><u>Explanation</u>;</h3>
- Le Chatelier's principle states that when a change or a "stress" is placed on a system that is at equilibrium, the system will shift in such a way to relieve that change or stress.
- The stresses include; changing the concentration of reactants or products, altering the temperature in the system and changing the pressure of the system.
- Therefore; <u><em>when a chemical reaction is at equilibrium and experiences a change in pressure, temperature, or concentration of products or reactants, the equilibrium shifts in the opposite direction to offset the change. </em></u>
Answer:
MnO4⁻ (aq) + 8H⁺ (aq) + 5Fe³⁺ (aq) →Mn(aq)²⁺ + 4H2O (l) + 5Fe²⁺(aq)
Explanation:
a)
MnO4⁻ (aq) + 8H⁺ (aq) + 5e⁻ → Mn(aq)²⁺ + 4H2O (l)
b)
5Fe³⁺ (aq) +5e⁻ → 5Fe²⁺(aq)
c)
MnO4⁻ (aq) + 8H⁺ (aq) + 5Fe³⁺ (aq) →Mn(aq)²⁺ + 4H2O (l) + 5Fe²⁺(aq)
Ionic bonds hold NaCl together
A metallic conductor moving at a constant speed in a magnetic field may develop a voltage across it. This is an example of Motional emf
Hope this helps!
It dissolves I think I know I am expert and. Ute