Answer:
We need 17.2 L of Ca(OH)2
Explanation:
Step 1: Data given
Concentration of Ca(OH)2 = 1.45 M
Moles of H2SO4 = 25.0 moles
Step 2: The balanced equation
Ca(OH)2 + H2SO4 ⟶2H2O + CaSO4
Step 3: Calculate moles Ca(OH)2
For 1 mol Ca(OH)2 we need 1 mol H2SO4 to produce 2 moles H2O and 1 mol CaSO4
For 25.0 moles H2SO4 we'll need 25.0 moles Ca(OH)2 to produce 50 moles H2O and 25.0 moles CaSO4
Step 4: Calculate volume of Ca(OH)2
Volume Ca(OH)2 = moles Ca(OH)2 / concentration Ca(OH)2
Volume Ca(OH)2 = 25.0 moles / 1.45 M
Volume Ca(OH)2 = 17.2 L
We need 17.2 L of Ca(OH)2
Answer:
If 51.8 of Pb is reacting, it will require 4.00 g of O2
If 51.8 g of PbO is formed, it will require 3.47 g of O2.
Explanation:
Equation of the reaction:
2 Pb + O2 → 2 PbO
From the equation of reaction, 2 moles of lead metal, Pb, reacts with 1 mole of oxygen gas, O2, to produce 2 moles of lead (ii) oxide, PbO
Molar mass of Pb = 207 g
Molar mass of O2 = 32 g
Molar mass of PbO = 207 + 32 = 239 g
Therefore 2 × 207 g of Pb reacts with 32 g of O2 to produce 2 × 239 g of PbO
= 414 g of Pb reacts with 32 g of O2 to produce 478 g of PbO
Therefore, formation of 51.8 g of PbO will require (32/478) × 51.8 of O2 = 3.47 g of O2.
If 51.8 of Pb is reacting, it will require (32/414) × 51.8 g of O2 = 4.00 g of O2
<span>Use the van't Hoff equation:
ln
(
K2
K1
)
=
Δ
HÂş
R
(
1
T1
â’
1
T2
)
ln
(
K2
7.6*10^-3
)
=
-14,200 J
8.314
(
1
298
â’
1
333
)
ln
(
K2
7.6*10^-3
)
=
â’
1708
(
0.00035
)
ln
(
K2
0.0076
)
=
â’
0.598
Apply log rule
a
=
log
b
b
a
-0.598 =
ln
(
e
â’
0.598
)
=
ln
(
1
e
0.598
)
Multiply both sides with e^0.598
K
2
e
0.598
= 0.0076
K
e
0.598
e
0.598
=
0.0076
e
0.598
K
2
=
0.0076
e
0.598
=
4.2
â‹…
10
â’
3
K2
=
4.2
â‹…
10
â’
3</span>