Given that,
The acceleration of gravity is -9.8 m/s²
Initial velocity, u = 39.2 m/s
Time, t = 2 s
To find,
The final velocity of the shot.
Solution,
Let v is the final velocity of sling shot. Using first equation of motion to find it.
v = u +at
Here, a = -g
v = u-gt
v = (39.2)-(9.8)(2)
v = 19.6 m/s
So, its velocity after 2 seconds is 19.6 m/s.
Answer:
Centripetal Acceleration = v^2/r
= (circumference/time)^2/r
= (2*pi*r/t)²)/r
= ((2³.14*50/14.3)²)/50
= 9.64 m/s²
brainlist?
Explanation:
Answer:
please find the solution which is defined as follows:
Explanation:
Throughout the opposite direction, she not able to throw her tool-belt. In this scenario, she will be sending her floating through her ship. Unless interrupted, it could refer to Newton's The rule of it in motion remains in motion. Consequently, if they throw it one way because there are no molecules to interrupt your course, you can continue to go the other way.
This is the concept of trigonometry, the direction of the John will be given by:
tan theta=opposite/adjacent
suppose:
a=theta
opposite=4 mph
adjacent=5.5 mph
tan a=4/5.5
a=tan^-1(4/5.5)
a=36
therefore the boat canoe will be moving 36 degrees from East, his direction will be 126 degrees south east
Answer:
0.043 m
Explanation:
From the attachment, the shaded part is the ethyl alcohol. The crossed part on the other hand, is that of glycerin.
The height of the Ethyl Alcohol is h2 = 0.25 m, it's density is ρ2 = 790 kg/m³. The density of glycerin is ρ1 = 1260 kg/m³
If we assume pressure at the two points to be the same, then
P1 = P2
ρ1.g.V1 = ρ2.g.V2
ρ1.A.h1 = ρ2.A.h2
ρ1.h1 = ρ2.h2, making h1 subject of formula
h1 = ρ2.h2 / ρ1, so that
h1 = 790 * 0.25 / 1260
h1 = 197.5 / 1260
h1 = 0.157 m
Δh = 0.2 - 0.157
Δh = 0.043 m or 4.3 cm