Answer:
v = 42.92 m/s
Explanation:
Given,
initial speed of the ball, v = 11 m/s
time taken to hit the ground = 5.5 m/s
velocity of the ball just before it hit the ground, v = ?
time taken by the ball to reach the maximum height
using equation of motion
v = u + at
final velocity = 0 m/s
0 = 11 - 9.8 t
t = 1.12 s.
time taken by the ball to reach the water from the maximum height
t' - 5.5 -1.12 = 4.38 s
using equation of motion for the calculation of speed just before it hit the water.
v = u + a t
v = 0 + 9.8 x 4.38
v = 42.92 m/s
Velocity of the ball just before it reaches the water is equal to v = 42.92 m/s
Answer:
option(d)
Explanation:
The frequency of a wave is the property of the source of wave.
The velocity of all the electromagnetic waves is same as the speed of light. It only changes as the light passes through one medium to another.
The frequency is defined as the number of waves coming out from the source in 1 second.
As the frequency of wave increases, the number of wave coming per second increases.
So, the number of waves passing by increases but the speed remains same.
Option (d)
Answer:
-0. 75m/s^2
Explanation:
use formula of acceleration
Answer:
35.3 N
Explanation:
U = 0, V = 0.61 m/s, s = 0.39 m
Let a be the acceleration.
Use third equation of motion
V^2 = u^2 + 2 as
0.61 × 0.61 = 0 + 2 × a × 0.39
a = 0.477 m/s^2
Force = mass × acceleration
F = 74 × 0.477 = 35.3 N