Answer:
1 Newton
Explanation:
F=9*10^9*q0q1/r^2]]
F=9*10^9*(q0q1)/ r^2
r=3cm
F=4N
F=9*10^9*(q0q1)/3^2
4=9*10^9*(q0q1)/9
4=10^9 q0q1
q0q1=4/10^9
q0q1=4*10^-9
To calculate the force between the forces at a distance of 6 cm
F=9*10^9*(q0q1)/ r^2
=9*10^9*(4*10^-9)/6^2
=9*10^9*(4*10^-9)/36
=10^9*4*10^-9/4
=10^9*10^-9
=1 Newton
<h2>Hello!</h2>
The answer is: 19.59 m
<h2>Why?</h2>
Since there is no information about the launch type, we can assume that the ball is thrown vertically upward.
When the ball reaches the maximum height, just at that moment, the velocity turns to 0, and after that moment, the ball starts falling, so:
We will use the following formula:

Where:
Vf= Final velocity = 0
Vi= Initial velocity = 
g = Gravity Acceleration = 
s = Traveled distance

Have a nice day!
Answer:
1.8x10⁻³m
Explanation:
From the question above, the following information was used to solve the problem.
wavelength λ = 4.5x10⁻⁷m
Length L = 2.0 meters
distance d = 5 x 10₋⁴m
ΔY = λL/d
= 4.5x10⁻⁷m (2) / 5 x 10₋⁴m
= 0.00000045 / 0.0005
= 0.0000009/0.0005
= 0.0018
= 1.8x10⁻³m
from the solution above The separation between two adjacent bright fringes is most nearly 1.8x10⁻³m
thank you!
Answer:
Decrease
Explanation:
If you crawl to the rim the rotational speed will decrease. The law of conservation of angular momentum supports this answer. And it states that :
"When the net external torque acting on a system about a given axis is. zero , the total angular momentum of the system about that axis remains constant."
Answer:
D) -Q
Explanation:
The charge inserted will induce -Q charge on the inner surface and + Q on the outer surface of the shell . This charge is called bound charge because it remained attached with opposite charge inserted inside.