Explanation:
It is given that,
A particle starts from rest and has an acceleration function as :

(a) Since, 
v = velocity




(b) 
x = position



(c) Velocity function is given by :


t = 1 seconds
So, at t = 1 second the velocity of the particle is zero.
Answer:
<h2>300 J</h2>
Explanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 10 m/s²
From the question we have
PE = 2 × 10 × 15
We have the final answer as
<h3>300 J</h3>
Hope this helps you
-GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Given
A particle of mass m moving under the influence of a fixed mass's M, gravitational potential energy of formula -GMm/r, where r is the separation between the masses and G is the gravitational constant of the universe.
As the Gravity Potential energy of particle = -GMm/r
Total energy of particle = Kinetic energy + Potential Energy
As we know that
Kinetic energy = 1/2mv²
Also, v is equals to square root of GM/r
v = √GM/r
Put the value of v in the formula of kinetic energy
We get,
Kinetic Energy = GMm/2r
Total Energy = GMm/2r + (-GMm/r)
= GMm/2r - GMm/r
= -GMm/2r
Hence, -GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Learn more about Gravitational Potential Energy here brainly.com/question/15896499
#SPJ4
I believe the answer would be 4.5. because it wouldnt be c or d. and 2 seems too small.
Answer:
A
Explanation:
The figure shows the electric field produced by a spherical charge distribution - this is a radial field, whose strength decreases as the inverse of the square of the distance from the centre of the charge:

More precisely, the strength of the field at a distance r from the centre of the sphere is

where k is the Coulomb's constant and Q is the charge on the sphere.
From the equation, we see that the field strength decreases as we move away from the sphere: therefore, the strength is maximum for the point closest to the sphere, which is point A.
This can also be seen from the density of field lines: in fact, the closer the field lines, the stronger the field. Point A is the point where the lines have highest density, therefore it is also the point where the field is strongest.