Answer:
The answer is 35.45 yds
Explanation:
You have to picture this to be able to understand it better (see attachment).
Start at the origin which is when the quarterback (QB) takes the ball. He runs backwards 12.1 yards, runs sideways for 19.8 yards (it doesn´t matter if he runs right or left), then he throws the ball forward 41.5 yards. If you look at the attachment, you can see I drew the path that the football followed. And then connected the dots from the origin and finish. The distance between those two points is the magnitude of the resultant displacement.
In order to calculate it, all you need to do is use the Pythagoream theorem, which says that the square of the hypotenuse equals the sum of the squares of the legs a and b of the triangle rectangle.
then solve for R
In this case, you know the length of leg a to be 19.8 yards which how much it moves sideways. And then, to get the length of leg b, all you need to do is substract how much it moved backwards from the 41.5yards forward displacement. This results in b leg being 29.4 yards long.
Now you have a triangle with:
- a = 19.8 yards
- b = 29.4 yards
Substituting this numbers in the equation:

- R = 35.45 yards
The nervous system is responsible for sending, receiving, and interpreting information from all parts of the body. The nervous system monitors and coordinates internal organ function and responds to changes in the external environment. (The role) The central nervous system consists of the brain and the spinal cord. It is part of the overall nervous system that also includes a complex network of neurons, known as the peripheral nervous system. (Central nervous system)
7. First write down all the known variables while separating the values for each direction:
x-direction:
vix = 20m/s
vfx = 20m/s
x = 39.2m
y-direction:
viy = 0m/s
ay = -9.8m/s^2
y = ?
Based on the knowns, the first step is to calculate the time of flight from the x-direction as it will be the same as value for the y-direction. Find the correct kinematic equation to do so:
x = (1/2)(vix+vfx)t
(39.2) = (1/2)(20+20)t
1.96s = t
Now that we have the time of flight, we can use the kinematic equation that will relate the known variables in the y-direction:
y = viy*t + (1/2)ay*t^2
y = (0)(1.96) + (1/2)(-9.8)(1.96)^2
y = -18.82m (Value is negative because gravity constant was negative. It is the height reference that from the top of the building down, which is why it is negative. The sign can be ignored for this question.)
8. First write down all the known variables while separating the values for each direction:
x-direction:
x = 12m
vfx = 0m/s
vix = ?
y-direction:
y1 = 1.2m
y2 = 0.6m
viy = 0m/s;
ay = -9.8m/s^2
First find time in the y-direction as it would be the same value for the x-direction.
(y2 - y1) = viy*t + (1/2)ay*t^2
(-0.6) = (0)t + (1/2)(-9.8)t^2
t = 0.35s
Now that we have the time of flight, we can use the kinematic equation that will relate the known variables in the x-direction:
x = (1/2)(vix+vfx)t
(12) = (1/2)(vix+(0))(0.35)
68.6m/s = vix