Answer:
a.) a = 0 ms⁻²
b.) a = 9.58 ms⁻²
c.) a = 7.67 ms⁻²
Explanation:
a.)
Acceleration (a) is defined as the time rate of change of velocity
Given data
Final velocity = v₂ = 0 m/s
Initial velocity = v ₁ = 0 m/s
As the space shuttle remain at rest for the first 2 minutes i.e there is no change in velocity so,
a = 0 ms⁻²
b.)
Given data
As the space shuttle start from rest, So initial velocity is zero
Initial velocity = v₁ = 0 ms⁻¹
Final velocity = v₂ = 4600 ms⁻¹
Time = t = 8 min = 480 s
By the definition of Acceleration (a)

a = 9.58 ms⁻²
c.)
Given data
As the space shuttle is at rest for first 2 min then start moving, So initial velocity is zero
Initial velocity = v₁ = 0 ms⁻¹
Final velocity = v₂ = 4600 ms⁻¹
Time = t = 10 min = 600 s
By the definition of Acceleration (a)

a = 7.67 ms⁻²
It begins with a kick-off
Answer:
Range, 
Explanation:
The question deals with the projectile motion of a particle mass M with charge Q, having an initial speed V in a direction opposite to that of a uniform electric field.
Since we are dealing with projectile motion in an electric field, the unknown variable here, would be the range, R of the projectile. We note that the electric field opposes the motion of the particle thereby reducing its kinetic energy. The particle stops when it loses all its kinetic energy due to the work done on it in opposing its motion by the electric field. From work-kinetic energy principles, work done on charge by electric field = loss in kinetic energy of mass.
So, [tex]QER = MV²/2{/tex} where R is the distance (range) the mass moves before it stops
Therefore {tex}R = MV²/2QE{/tex}
Answer:
The value is 
Explanation:
From the question we are told that
The horizontal speed is 
The horizontal distance is 
Generally the time taken by the hot magma in air before landing is mathematically represented as

=> 
=> 
Generally the initial vertical velocity of the magma when it was lunched is

Then the final velocity of the magma when it hits the ground is mathematically represented s

Here the negative sign mean that the direction of the velocity is towards the negative y -axis
So

=> 
Answer:
A. 243 N
Explanation:
Friction is the force that opposes the relative motion between systems that are in contact.
This friction force that opposes the motion of the oak chest across the oak surface will be equal and opposite to that exerted by the woman.
First find the normal force which is the force that would point directly upwards to support weight of the block.
Normal force, N= mg where m is the mass of the chest and g is the acceleration due to gravity.
Given m=40 kg and g=9.80 m/s²
N force=40×9.80 =392N
Then find the force of friction which is given by the formula;
<em>F=μN where μ is friction coefficient for the oak chest and N is the normal force on the chest</em>
Given <em>μ</em>=0.620 and N force = 392 N then it will be;
F=0.620× 392 =243.04 N
Answer : 243 N