If the velocity is constant then the acceleration of the object is zero.

Thus when we apply the equation

It remains

or equivalent
Answer:
11060M Joules, where M is the mass of the diver in kg
Explanation:
Mass of the skydiver missing, we're assuming it's M.
It's total energy is the sum of the contribution of his kinetic energy (K)- since he's moving at 50 m/s, and it's potential energy (U), since he's subject to earth gravity.
Energy is the sum of the two, so 
This question is incomplete, the complete question is;
Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to the magnetic field. The electric field strength 1.5 m from the center of the circle is 7 mV/m.
At what rate is the magnetic field changing?
Answer:
the magnetic field changing at the rate of 9.33 m T/s
Explanation:
Given the data in the question;
Electric field E = 7 mV/m
radius r = 1.5 m
Now, from Faraday law of induction;
∫E.dl = d∅/dt
E∫dl = A( dB/dt )
E( 2πr ) = πr² ( dB/dt )
( 0.007 ) = (r/2) ( dB/dt )
( 0.007 ) = 0.75 ( dB/dt )
dB/dt = 0.007 / 0.75
dB/dt = 0.00933 T/s
dB/dt = ( 0.00933 × 1000) m T/s
dB/dt = 9.33 m T/s
Therefore, the magnetic field changing at the rate of 9.33 m T/s
Answer: 7200 m
Explanation: The solution is, first convert 15 minutes to seconds.
15 mins x 60 s / 1 min = 900 s
Use the formula for speed which is v= d/t then derive for d.
d = vt
= 8 m/s ( 900s)
= 7200 m