The volume of the 0.279 M Ca(OH)₂ solution required to neutralize 24.5 mL of 0.390 M H₃PO₄ is 51.4 mL
<h3>Balanced equation </h3>
2H₃PO₄ + 3Ca(OH)₂ —> Ca₃(PO₄)₂ + 6H₂O
From the balanced equation above,
- The mole ratio of the acid, H₃PO₄ (nA) = 2
- The mole ratio of the base, Ca(OH)₂ (nB) = 3
<h3>How to determine the volume of Ca(OH)₂ </h3>
- Molarity of acid, H₃PO₄ (Ma) = 0.390 M
- Volume of acid, H₃PO₄ (Va) = 24.5 mL
- Molarity of base, Ca(OH)₂ (Mb) = 0.279 M
- Volume of base, Ca(OH)₂ (Vb) =?
MaVa / MbVb = nA / nB
(0.39 × 24.5) / (0.279 × Vb) = 2/3
9.555 / (0.279 × Vb) = 2/3
Cross multiply
2 × 0.279 × Vb = 9.555 × 3
0.558 × Vb = 28.665
Divide both side by 0.558
Vb = 28.665 / 0.558
Vb = 51.4 mL
Thus, the volume of the Ca(OH)₂ solution needed is 51.4 mL
Learn more about titration:
brainly.com/question/14356286
Answer:
All answers attached in the pictures above.
20. Would be the right answer
Anything can be homogenous as long as you can only see the same type of liquid
think about it like this
orange juice with pulp is Hetero
orange juice with no pulp is homo