6 protons, 6 neutrons, and 5 electrons
Firstly the limiting reactant should be identified. Limiting reactant is the reactant that is in limited supply, the amount of product formed depends on the moles present of the limiting reactant.
the stoichiometry of x to y = 1:2
1 mole of x reacts with 2 moles of y
if x is the limiting reactant, there are 3 moles of x, then 6 moles of y should react, however there are only 4 moles of y. Therefore y is the limiting reactant and x is in excess.
4 moles of y reacts with 2 moles of x
since there are 3 moles of x initially and only 2 moles are used up, excess amount of x is 1 mol thats in excess.
(1) MO₂(s) + C(s) → M(s) + CO₂ (g), ΔG₁ = 288.9 kJ/mol
(2) C(s) + O₂(g) → CO₂(g), ΔG₂ = -394.4 kJ/mol
By adding both equations 1 + 2 we get the coupled reaction:
MO₂(s) + 2 C(s) + O₂(g) → M(s) + 2 CO₂(g)
ΔG⁰ = ΔG₁ + ΔG₂
= 288.9 + (-394.4) = -105.5 kJ/mol = -105500 J/mol
Temperature T = 25 + 273.15 = 298.15 K
Molar gas constant R = 8.314 J/mol.K
K =

=
= 3.05 x 10¹⁸
Answer:
Option (2)
Explanation:
Since the amount of each sample is the same, we are looking for the metal with the greatest density, which is copper.