Answer:
Explanation:
given,
initial velocity of the ball = 20 m/s
angle of ramp = 22°
ball travel at a distance = 5 m
a) for friction less




v = 17.58 m/s
b) considering the friction




v = 17.16 m/s
Answer:
<em>The direction of the magnetic field on point P, equidistant from both wires, and having equal magnitude of current flowing through them will be pointed perpendicularly away from the direction of the wires.</em>
Explanation:
Using the right hand grip, the direction of the magnet field on the wire M is counterclockwise, and the direction of the magnetic field on wire N is clockwise. Using this ideas, we can see that the magnetic flux of both field due to the currents of the same magnitude through both wires, acting on a particle P equidistant from both wires will act in a direction perpendicularly away from both wires.
Answer:
4 m/s
Explanation:
Momentum is defined as:

where
m is the mass of the object
v is its velocity
For the object in this problem, we know:
p = 200 kg m/s is the momentum
m = 50 kg is the mass
Solving for the velocity, we find:

The total displacement of the toy car at the given positions is 0.
The given parameters;
- <em>First displacement of the car, = 5 cm left</em>
- <em>Second displacement of the car, = 8 cm right</em>
- <em>Third displacement of the car, = 3 cm to the left</em>
The total displacement of the car is calculated as follows;
- <em>Let the </em><em>left </em><em>direction be "</em><em>negative </em><em>direction"</em>
- <em>Let the </em><em>right </em><em>direction be "</em><em>positive </em><em>direction"</em>

Thus, the total displacement of the toy car at the given positions is 0.
Learn more about displacement here: brainly.com/question/18158577