All Angles Added: 180
Measures of Idiviudual Angles
A=70 C=70 B=40
-------------------------------------------------------------------------------
Step-by-step explanation:
All angles of a triangle when combined must equal 180 degrees.
Since the triangle is an isosceles triangle, at least 2 sides must be congruent meaning that A=C since the triangle is not equilateral.
1= 15
2= 12
Hope this helps
2 and 4 because we all now 2 because every even number is in 2 and 88 divide 4 is 22 and 60 divide 4 is 15
Answer:
<h2>C. G(x) = (x - 1)² - 3</h2>
Step-by-step explanation:
f(x) + n - shift the graph of f(x) n units up
f(x) - n - shift the graph of f(x) n units down
f(x - n) - shift the graph of f(x) n units to the right
f(x + n) - shift the graph of f(x) n units to the left
===================================
Look at the picture.
The graph of F(x) shifted 1 unit to the right and 3 units down.
Therefore the equation of the function G(x) is

The first step is to determine the distance between the points, (1,1) and (7,9)
We would find this distance by applying the formula shown below
![\begin{gathered} \text{Distance = }\sqrt[]{(x2-x1)^2+(y2-y1)^2} \\ \text{From the graph, } \\ x1\text{ = 1, y1 = 1} \\ x2\text{ = 7, y2 = 9} \\ \text{Distance = }\sqrt[]{(7-1)^2+(9-1)^2} \\ \text{Distance = }\sqrt[]{6^2+8^2}\text{ = }\sqrt[]{100} \\ \text{Distance = 10} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B%28x2-x1%29%5E2%2B%28y2-y1%29%5E2%7D%20%5C%5C%20%5Ctext%7BFrom%20the%20graph%2C%20%7D%20%5C%5C%20x1%5Ctext%7B%20%3D%201%2C%20y1%20%3D%201%7D%20%5C%5C%20x2%5Ctext%7B%20%3D%207%2C%20y2%20%3D%209%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B%287-1%29%5E2%2B%289-1%29%5E2%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B6%5E2%2B8%5E2%7D%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B100%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%2010%7D%20%5Cend%7Bgathered%7D)
Distance = 10 units
If one unit is 70 meters, then the distance between both entrances is
70 * 10 = 700 meters