Answer:
The Partial pressure of Xe and Ne will be 4.95 atm and 1.55 atm. The number of moles of Xe and Ne will be 3.13 and 0.981
Explanation:
Let the total pressure of the vessel= 6.5 atm and mole fraction of Xenon= 0.761
As we know,

According to Dalton's Law of partial pressure-

Where,
The pressure of the gas component in the mixture
Mole fraction of that gas component
The total pressure of the mixture

<u>Calculation: </u>
To calculate the number of moles,
PV=nRT


Learn more about Dalton's Law of partial pressure here;
brainly.com/question/14119417
#SPJ4
Answer:
we use atom in our sentences all the time
Explanation:
that what i put
Answer:
Option A = atomic masses
Explanation:
In compound molecular mass is the sum of the individual atomic masses of the atoms.
For example
Compound NaCl.
atomic weight of sodium = 23 g/mol
atomic weight of chlorine = 35.5 g/mol
Molar mass of NaCl = 23+ 35.5 = 58.5 g/mol
Every atom consist of nucleus or a positive center. The protons and neutrons are present with in the nucleus while electrons are present out side the nucleus. All these three subatomic particles construct an atom. The number of protons or number of electrons are the atomic number of an atom while the number of protons and number of neutrons are the mass number of an atom. A neutral atom have equal number of protons and electrons. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other.
Answer:
12.99
Explanation:
<em>A chemist dissolves 716. mg of pure potassium hydroxide in enough water to make up 130. mL of solution. Calculate the pH of the solution. (The temperature of the solution is 25 °C.) Be sure your answer has the correct number of significant digits.</em>
Step 1: Given data
- Mass of KOH: 716. mg (0.716 g)
- Volume of the solution: 130. mL (0.130 L)
Step 2: Calculate the moles corresponding to 0.716 g of KOH
The molar mass of KOH is 56.11 g/mol.
0.716 g × 1 mol/56.11 g = 0.0128 mol
Step 3: Calculate the molar concentration of KOH
[KOH] = 0.0128 mol/0.130 L = 0.0985 M
Step 4: Write the ionization reaction of KOH
KOH(aq) ⇒ K⁺(aq) + OH⁻(aq)
The molar ratio of KOH to OH⁻is 1:1. Then, [OH⁻] = 0.0985 M
Step 5: Calculate the pOH
We will use the following expression.
pOH = -log [OH⁻] = -log 0.0985 = 1.01
Step 6: Calculate the pH
We will use the following expression.
pH + pOH = 14
pH = 14 - pOH = 14 -1.01 = 12.99
Answer: Protons because they have a positive charge.
Explanation: