Answer:
If you're just looking at the Lewis Structure from the perspective of the octet rule, it does appear that the structure is correct. Dinitrogen always has a lone pair of electrons which could conceivably be used for dative bonding as you suggest. So from that perspective there appears to be nothing wrong at all - other than that it doesn't exist in nature in this way.
Explanation:
Answer:
2FeBr3 + 3Na2S ➡️ Fe2S3 + 6NaBr
Answer:
Since with LiBr no precipitation takes place. So, Ag+ is absent
When we add Li2SO4 to it, precipitation takes place.
Ca2+(aq) + SO42-(aq) ----> CaSO4(s) ...Precipitate
Thus, Ca2+ is present.
When Li3PO4 is added, again precipitation takes place.Reaction is:
Co2+(aq) + PO43-(aq)---->Co3(PO4)2(s) ... Precipitate
A. Ca2+ and Co2+ are present in solution
B. Ca2+(aq) + SO42-(aq) ----> CaSO4(s)
C. 3Co2+(aq) + 2PO43-(aq)---->Co3(PO4)2(s)
B is the right answer because it’s a double replacement reaction and the potassium is balanced with the sulphate
It gets hotter because the core is the outside of the eath and the mantel is the more inside/hope i helped