Answer:
CH4
Explanation:
In solving this problem, we must remember that one mole of a compound contains Avogadro's number of elementary entities. These elementary entities include atoms, molecules, ions etc. Recall that one mole of a substance is the amount of substance that contains the same number of elementary entities as 12g of carbon-12. The Avogadro's number is 6.02 × 10^23.
Hence we can now say;
If 163 g of the compound contains 6.13 ×10^24 molecules
x g will contain 6.02 × 10^23 molecules
x= 163 × 6.02 × 10^23 / 6.13 × 10^24
x= 981.26 × 10^23/ 6.13 ×10^24
x= 160.1 × 10^-1 g
x= 16.01 g
x= 16 g(approximately)
16 g is the molecular mass of methane hence x must be methane (CH4)
3.75 litres is the volume of the balloon indoors at a temperature of 25°C.
Explanation:
Data given:
initial temperature of the gas in balloon = -35°C or 238.15 K
initial volume = 3 litres
final temperature = 25 °C or 298.15 K
final volume =?
pressure remains constant
From the data given when pressure is constant Charles' law is applied.
= 
Rearranging the equation to know the final volume of the gas in balloon
V2 = 
V2 = 
V2 = 3.75 Litres
when the temperature of a gas is increased and pressure remains constant the volume of the gas increases.
Answer:
6.8 × 10⁻⁴ mol/L.atm
Explanation:
Step 1: Given data
Solubility of nitrogen gas at 25°C (S): 4.7 × 10⁻⁴ mol/L
Partial pressure of nitrogen gas (P): 522 mmHg
Step 2: Convert the partial pressure of nitrogen to atm
We will use the relationship 1 atm = 760 mmHg.

Step 3: Calculate the value of the Henry's Law constant (k)
We will use Henry's law.

Explanation:
The reaction equation will be as follows.

Using bond energies, expression for calculating the value of
is as follows.

On reactant side, from
number of bonds are as follows.
C-C bonds = 1
C-H bonds = 6
From
; Cl-Cl bonds = 1
On product side, from
number of bonds are as follows.
C-C bonds = 1
C-H bonds = 5
C-Cl bonds = 1
From HCl; H-Cl bonds = 1
Hence, using the bond energies we will calculate the enthalpy of reaction as follows.

=
= -102 kJ/mol
Thus, we can conclude that change in enthalpy for the given reaction is -102 kJ/mol.