Answer: Ca(OH)2 (aq) + H2SO4 (aq) ----------> CaSO4(aq) + 2H2O(l)
Explanation:
Since this is a neutralization reaction, the end product would be salt and water. In this equation Calcium will displace hydrogen from the acid because it is more reactive, resulting in the formation of CaSO4 (salt), while the displaced H2 molecule combines with OH molecules to form water.
The equation of the reaction is thus;
Ca(OH)2 (aq) + H2SO4 (aq) ----------> CaSO4(aq) + H2O(l), in other to balance it, we add ''2'' to the water molecule in the right hand side of the equation.
Balance equation is
Ca(OH)2 (aq) + H2SO4 (aq) ----------> CaSO4(aq) + 2H2O(l)
Answer:
I am looking for this as well. Can someone please help!
Explanation:
1.0 mole ---------- 6.02x10²³ molecules
4.5 moles -------- ?
4.5 * 6,02x10²³ / 1.0
= 2.709x10²⁴ molecules units
Volume of the tank is 5.5 litres.
Explanation:
mass of the CO2 is given 8.6 grams
Pressure of the gas is 89 Kilopascal which is 0.8762 atm
Temperature of the gas is 29 degrees ( 0 degrees +273.5= K) so (29+273)
R = gas constant 0.0821 liter atmosphere per kelvin)
FROM THE IDEAL GAS LAW
PV=nRT ( P Pressure, V Volume, n is number of moles of gas, R gas constant, Temperature in Kelvin)
no of moles = mass/atomic mass
= 8.6/44
= 0.195 moles
now putting the values in equation
V=nRT/P
= 0.195*0.0821*302/ 0.8762
= 5.5 litres.
As the carbon dioxide gas occupies the volume os the tank hence volume of tank is 5.5 litres.
The initial temperature of the copper metal was 27.38 degrees.
Explanation:
Data given:
mass of the copper metal sample = 215 gram
mass of water = 26.6 grams
Initial temperature of water = 22.22 Degrees
Final temperature of water = 24.44 degrees
Specific heat capacity of water = 0.385 J/g°C
initial temperature of copper material , Ti=?
specific heat capacity of water = 4.186 joule/gram °C
from the principle of:
heat lost = heat gained
heat gained by water is given by:
q water = mcΔT
Putting the values in the equation:
qwater = 26.6 x 4.186 x (2.22)
qwater = 247.19 J
qcopper = 215 x 0.385 x (Ti-24.4)
= 82.77Ti - 2019.71
Now heat lost by metal = heat gained by water
82.77Ti - 2019.71 = 247.19
Ti = 27.38 degrees