Answer:
Law of conservation of mass
Ernest Rutherford
Explanation:
The basic law of behavior of matter that states that "mass is neither created nor destroyed in a chemical reaction or physical change".
This is the law of conservation of mass. It is very essential in understanding most chemical reaction. Also, in quantitative analysis, this law is pivotal.
Ernest Rutherford was the scientist that stated that the nucleus is made up of positive charge. It was not until James Chadwick in 1932 discovered the neutron that we had an understanding of this nuclear component.
Rutherford surmised from his experiment that because most the alpha particles passed through the thin Gold foil and just a tiny fraction was deflected back, the atom is made is made up of small nucleus that is positively charged.
This combination in non polar.
Answer:
The particles move faster and are far apart
Explanation:
A substance may exist in three states of matter; solid, liquid and gas.
In the solid state, there is very strong intermolecular forces between the particles of the substance. They can only vibrate or rotate about their mean positions but can not translate.
In the liquid state, the particles of the substance have a greater degree of freedom than in the solid. The magnitude of intermolecular forces is lower than in solids, the molecules can move at low speeds.
In a gas, the molecules are separated from each other with negligible intermolecular interaction hence they move at very high speed.
Therefore, for the water gas particles in the air above the cup; the particles move faster and are far apart.
Well....the answer is HCO3....but i don't know what it is said in worded form.
Looking at the names....it is probably Hydrogen Carbonate
Answer:
Q = 30355.2 J
Explanation:
Given data:
Mass of ice = 120 g
Initial temperature = -5°C
Final temperature = 115°C
Energy required = ?
Solution:
Specific heat capacity of ice is = 2.108 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Q = m.c. ΔT
ΔT = T2 -T1
ΔT = 115 - (-5°C)
ΔT = 120 °C
Q = 120 g × 2.108 j/g.°C × 120 °C
Q = 30355.2 J